期刊文献+

一类受媒体报道影响的H7N9禽流感模型 被引量:1

A Class of H7N9 Avian Influenza Models with Media Coverage
原文传递
导出
摘要 采用不同的函数刻画媒体报道在控制H7N9禽流感过程中的作用,建立数学模型对2013年春季中国大陆的实际传播数据进行了拟合,给出了不同情况下发病率的估计值.采用PRCC等敏感性分析方法讨论了累计感染人数对于各个参数的依赖性.结果表明,媒体报道对发病率的抑制效应对于降低累计感染人数有明显的效果,而媒体报道对预防效果的促进效应对累计感染人数的影响不明显. Different functions are adopted to describe the impact of media coverage on the spreading of A/HTN9 avian influenza. A class of mathematical models are proposed to fit the data of A/HTN9 in the spring of 2013 in China's Mainland. The incidence rates in different cases are estimated based on the data. The sensitivity analysis approaches including PRCC are applied to examine the dependence of cumulative infected cases on the parameters. The results indicate that the cumulative number of infected cases is clearly affected by the impact of the media coverage on the incidence; while it is not obvious that the media coverage promoting the preventive effect can help decrease the cumulative number.
作者 王爱丽 李艳颖 田兵 WANG Ai-li;LI Yan-ying;TIAN Bing(School of Mathematics and Information Science,Baoji University of Arts and Sciences,Baoji 721013,China)
出处 《数学的实践与认识》 北大核心 2018年第20期165-172,共8页 Mathematics in Practice and Theory
基金 国家自然科学基金(11801013) 陕西省教育厅专项科研计划项目(16JK1047) 宝鸡文理学院重点科研计划项目(ZK16048,ZK2017020)
关键词 HTN9禽流感 媒体报道 发病率 预防效果 LOGISTIC模型 A/HTN9 avian influenza media report incidence preventive effect Logisticequation
  • 引文网络
  • 相关文献

参考文献4

二级参考文献34

  • 1Liu Y, Cui J. The impact of media convergence on the dynamics of infectious diseases[J]. Interna- tional Journal of Biomathematics, 2008(1): 65-74.
  • 2Cui J, Tao X, Zhu H. An SIS infection model incorporating media convergence [J]. The Rocky Mountain Journal of Mathematics, 2008(38): 1323-1334.
  • 3Cui J, Sun Y, Zhu H. The impact of media on the spreading and control of infectious disease[J]. Journal of Dynamics and Differential Equations, 2008(20): 31-53.
  • 4Misra A K, Sharma A , Shukla J B . Modeling and analysis of effects of awareness programs by media on the spread of infectious diseases[J]. Mathematical and Computer Modeling, 2011(53): 1221-1228.
  • 5Funk S, Gilad E, Jansen V A A. Endemic disease, awareness, and local behavioural response[J]. Journal of Theoretical Biology, 2010(264): 501-509.
  • 6Funk S, Gilad E, Watkins C, Jansen V A A. The spread of awareness and its impact on epidemic outbreaks[J]. PNAS, 2009(106): 6872-6877.
  • 7Freedman H I, So J W H. Global stability and persistence of simple food chains[J]. Mathematical Biosciences, 1985(76): 69-86.
  • 8Freedman H I, Rao V S H. The trade-off between mutual interference and time lags in predator-prey systems[J]. Bulletin of Mathematical Biology,1983(45): 991-1004.
  • 9Gopalsamy K. Stability and oscillations in delay differential equations of population dynamics[J]. Mathematics and its Applications, Kluwer Academic Publication, Dordrecht, 1992(74).
  • 10Czene K, Reilly M, Hall P, Hartman M. A constant risk for familial breast cancer? a popula- tion-based family study[ J ]. Breast Cancer Res, 2009, 11 (3) : R30.

共引文献58

同被引文献2

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部