期刊文献+

基于类3σ准则的光伏功率异常数据识别 被引量:14

Identification of abnormal data of photovoltaic power based on class 3σ
下载PDF
导出
摘要 在光伏电站实际运行过程中,通信测量设备故障、人为因素均会造成测量数据异常。为了有效地识别和处理异常数据,文章利用混合t Location-Scale分布模型中模型参数易于调整的特征,建立了类似于正态分布3σ准则模型的类3σ准则模型,并利用该模型对光伏功率异常数据进行识别。文章对两个光伏电站的实测数据进行分析,研究结果表明,与正态分布3σ准则模型相比,类3σ准则模型具有正确识别率高、适用性好等优点。 In the actual operation of photovoltaic power plant, communication measurement equipment failure or human factors may lead to abnormal measurement data. In order to identify and process the abnormal data effectively, this paper use the model parameters’ s flexible features of the mixed t Location-Scale distribution model to establish a class 3σ criterion which is similar to the 3σcriterion of normal distribution, which can be used to identify the abnormal data of photovoltaic power.Taking the measured data of two photovoltaic power plants as an example, the class 3σ criterion has the advantages of high recognition rate and good applicability compared with the 3σ criterion of normal distribution.
作者 杨茂 孟玲建 李大勇 苏欣 崔杨 Yang Mao;Meng Lingjian;Li Dayongz;Su Xin;Cui Yang(Jilin Provincial Key Laboratory of Modern Power System Simulation and Control,Northeast Electric Power University,Jilin 132012,China;State Grid Jilin Electric Power Co.,Ltd.Tonghua Power Supply Company,Jilin 130022,China;College of Science,Northeast Electric Power University,Jilin 132012,China)
出处 《可再生能源》 CAS 北大核心 2018年第10期1443-1448,共6页 Renewable Energy Resources
基金 国家重点研发计划项目(2018YFB0904200)
关键词 光伏功率 异常数据 类3σ准则模型 混合t Location-Scale分布 photovoltaic power abnormal data class 3σ criterion model mixed t Location-Scale distribution
  • 相关文献

参考文献13

二级参考文献170

共引文献505

同被引文献161

引证文献14

二级引证文献52

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部