摘要
In this paper, we present an efficient energy stable scheme to solve a phase field model incorporating contact line condition. Instead of the usually used Cahn-Hilliard type phase equation, we adopt the Allen-Cahn type phase field model with the static contact line boundary condition that coupled with incompressible Navier-Stokes equations with Navier boundary condition. The projection method is used to deal with the Navier-Stokes equa- tions and an auxiliary function is introduced for the non-convex Ginzburg-Landau bulk potential. We show that the scheme is linear, decoupled and energy stable. Moreover, we prove that fully discrete scheme is also energy stable. An efficient finite element spatial discretization method is implemented to verify the accuracy and efficiency of proposed schemes. Numerical results show that the proposed scheme is very efficient and accurate.
In this paper, we present an efficient energy stable scheme to solve a phase field model incorporating contact line condition. Instead of the usually used Cahn-Hilliard type phase equation, we adopt the Allen-Cahn type phase field model with the static contact line boundary condition that coupled with incompressible Navier-Stokes equations with Navier boundary condition. The projection method is used to deal with the Navier-Stokes equa- tions and an auxiliary function is introduced for the non-convex Ginzburg-Landau bulk potential. We show that the scheme is linear, decoupled and energy stable. Moreover, we prove that fully discrete scheme is also energy stable. An efficient finite element spatial discretization method is implemented to verify the accuracy and efficiency of proposed schemes. Numerical results show that the proposed scheme is very efficient and accurate.
基金
R. Chen is partially supported by the Fundamental Research Funds for Central Universities 24820182018RC25-500418780 and by the China Postdoctoral Science Foundation grant No. 2016M591122. X. Yang is partially supported by NSF DMS-1200487, NSF DMS-1418898, AFOSR FA9550-12-1-0178. H. Zhang is partially supported by NSFC/RGC Joint Research Scheme No. 11261160486, NSFC grant No. 11471046, 11571045.