期刊文献+

基于非线性状态估计的常见滤波算法性能研究 被引量:1

Research on Performances of the Regular Filtering Algorithms for Nonlinear State Estimation
下载PDF
导出
摘要 对于车载组合导航定位系统,当姿态误差角较大或车辆机动性强时,系统状态方程和量测方程皆为非线性,为了提高导航定位精度,需要利用非线性滤波进行状态估计。本文从原理上阐述了四种常见的非线性滤波算法,并研究了各算法的性能差异。 As for the vehicle integrated navigation and positioning system, when the attitude error angles are large orthe vehicle maneuvers quickly, the system' s state equation and measurement equation are nonlinear; so nonlinear filteringalgorithms should be used according in order to improve the accuracy of navigation and positioning. Four regularnonlinear filtering algorithms are stated in this paper, and their different performance is studied.
作者 刘朋朋 LIU Peng-peng(Sergeant School of Rocket Force,Qingzhou,Shandong,262500,China;National Key Lab.of Armament Launch Theory & Technology,Rocket Force University of Engineering,Xi'an,Shanxi,710025,China)
出处 《科技视界》 2018年第26期138-138,147,共2页 Science & Technology Vision
关键词 滤波算法 扩展卡尔曼滤波 无迹卡尔曼滤波 容积卡尔曼滤波 粒子滤波 估计精度 实时性 Filtering algorithm Extended Kalman filter Unscented Kalman filter Cubature Kalman filter Particle filter Estimation accuracy Real-time performance
  • 相关文献

同被引文献14

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部