摘要
对于车载组合导航定位系统,当姿态误差角较大或车辆机动性强时,系统状态方程和量测方程皆为非线性,为了提高导航定位精度,需要利用非线性滤波进行状态估计。本文从原理上阐述了四种常见的非线性滤波算法,并研究了各算法的性能差异。
As for the vehicle integrated navigation and positioning system, when the attitude error angles are large orthe vehicle maneuvers quickly, the system' s state equation and measurement equation are nonlinear; so nonlinear filteringalgorithms should be used according in order to improve the accuracy of navigation and positioning. Four regularnonlinear filtering algorithms are stated in this paper, and their different performance is studied.
作者
刘朋朋
LIU Peng-peng(Sergeant School of Rocket Force,Qingzhou,Shandong,262500,China;National Key Lab.of Armament Launch Theory & Technology,Rocket Force University of Engineering,Xi'an,Shanxi,710025,China)
出处
《科技视界》
2018年第26期138-138,147,共2页
Science & Technology Vision
关键词
滤波算法
扩展卡尔曼滤波
无迹卡尔曼滤波
容积卡尔曼滤波
粒子滤波
估计精度
实时性
Filtering algorithm
Extended Kalman filter
Unscented Kalman filter
Cubature Kalman filter
Particle filter
Estimation accuracy
Real-time performance