期刊文献+

基于改进的多块核主元分析的风电机组故障诊断方法 被引量:8

Fault Diagnosis of Wind Turbines Based on Improved Multiblock Kernel Principal Component Analysis
下载PDF
导出
摘要 针对风电机组运行工况和数据信息结构复杂、机组故障诊断困难的特点,提出了基于因子分析改进的多块核主元分析(MBKPCA)方法,通过对运行数据信息的深度挖掘,建立了机组数据、变量和运行工况3者之间的关联机制。通过对应分析,明确机组变量与数据的关联性,确定MBKPCA子块数目及实际含义。采用因子分析寻找各子块数据与对应运行过程的相关性,提高MBKPCA诊断精度。结果表明:改进的MBKPCA方法能够及时准确地对风电机组故障进行诊断,具有一定的工程应用价值。 To overcome the difficulty in fault diagnosis of wind turbines due to their complex operation conditions and data information structure, an improved multiblock kernel principal component analysis (MBK- PCA) method was proposed based on factor analysis, so as to establish an association mechanism among the unit data, variables and operating conditions by deeply mining the operation data. Through corresponding analysis, the relationship between unit variables and the data was defined, while the number of MBKPCA sub-blocks and their actual meanings were determined. Finally, the factor analysis was adopted to find out the correlation between the data of various sub-blocks and the process of corresponding motions, thus improving the diagnostic accuracy of MBKPCA. Results show that the improved MBKPCA method can help to make fault diagnosis timely and accurately for wind turbines, which may be applied in actual engineering projects.
作者 贾子文 顾煜炯 J IA Ziwen;GU Yujiong(School of Energy,Power and Mechanical Engineering,North China Electric Power University,Beijing 102206,China)
出处 《动力工程学报》 CAS CSCD 北大核心 2018年第10期820-828,共9页 Journal of Chinese Society of Power Engineering
基金 中央高校基本科研业务专项基金资助项目(2016XS27)
关键词 风电机组 多块核主元分析 因子分析 故障诊断 wind turbine MBKPCA factor analysis fault diagnosis
  • 相关文献

参考文献9

二级参考文献99

  • 1郭厚明,行志刚,荆双喜.无量纲参数在矿用低速重载齿轮故障诊断中的应用[J].煤炭科学技术,2006,34(8):28-31. 被引量:9
  • 2苗刚,马孝江,任全民.基于J散度的模式分类方法在故障诊断中的应用[J].中国机械工程,2007,18(4):431-433. 被引量:4
  • 3Crabtree C J, Feng Y, Tavner P J. Detecting incipient wind turbine gearbox failure., a signal analysis method for on-line condition monitoring[C]//Proceeding of European Wind Energy Conference, Poland, 2010.
  • 4Hameed Z, Hong Y S, Cho Y M, et al. Condition monitoring and fault detection of wind turbines and related algorithms: a review[J]. Renewable and Sustainable Energy Reviews, 2009, 13(1): 1-39.
  • 5Amirat Y, Benbouzid M, A1-Ahmar E. A brief status on condition monitoring and fault diagnosis in wind energy conversion systems[J]. Renewable and Sustainable Energy Reviews, 2009, 13(9): 2629-2636.
  • 6Lu Bin, Li Yaoyu, Wu Xin. A review of recent advance in wind turbine condition monitoring and fault diagnosis [C]//Proceedings of Power Electronics and Machines in Wind Application, Lincoln, 2009: 1-7.
  • 7Zaher A, McArther S D J, Infield D G, et al. Online wind turbine fault detection through automated scada data analysis[J]. Wind Energy , 2009, 12(6): 574-593.
  • 8Yang Wenxian, Tavner P J, Crabtree C J, et al. Costeffective condition monitoring for wind turbines[J]. IEEE TranslndustrialElectronics, 2010, 57(1): 263-271.
  • 9Simon J W, Xiang B J, Yang Wenxian. Condition monitoring of the power output of wind turbine generators using wavelets[J]. IEEE Trans. on Energy Conversion, 2010, 25(3): 715-721.
  • 10Yang W, Tavner P J, Wilkinson M R. Condition monitoring and fault diagnosis of a wind turbine synchronous generator drive train[J]. Renewable Power Generation, 2009, 3(1): 1-11.

共引文献243

同被引文献67

引证文献8

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部