期刊文献+

采用二次强化学习策略的多目标粒子群优化算法 被引量:2

Multi-objective Particle Swarm Optimization Algorithm With Quadratic Reinforcement Learning Strategy
下载PDF
导出
摘要 针对多目标粒子群算法在进化后期易出现早熟收敛、种群多样性丢失的问题,本文提出采用二次强化学习策略的多目标粒子群优化算法SslMOPSO.首先利用无速度多目标粒子群框架,通过向所有个体历史最优学习实现粒子的第一次强化学习;其次将分解策略融入多目标粒子群算法中,使粒子向指定数量邻居的均值学习,实现粒子的第二次强化学习,增强算法跳出局部最优的能力,提高种群的多样性;最后分别在具有两目标和具有三目标的七个基准测试函数上进行仿真实验,结果表明,所提算法获得的非支配解集较对比算法具有较好的分布性,表现出较好的搜索性能. Aiming at the problem of premature convergence and loss of population diversity in multi-objective particle swarm optimization algorithm in late evolutionary stage,this paper proposes a multi-objective particle swarm optimization algorithm SslMOPSO with quadratic reinforcement learning strategy.Firstly,a speed-free multi-objective particle swarm framework is adopted to achieve the first reinforcement learning of all particles through the best learning history of all individuals.Secondly,the decomposition strategy is integrated into the multi-objective particle swarm In the algorithm,particles are learned from the mean of the specified number of neighbors to realize the second reinforcement learning of the particle,which enhances the ability of the algorithm to jump out of the local optimality and improve the diversity of the population.Finally,the simulation experiments are carried out on seven benchmark test functions with two targets and three targets respectively.The results show that the non-dominated solution set obtained by the proposed algorithm has a better distribution than the comparative algorithm and shows better search performance.
作者 李浩君 张鹏威 刘中锋 张征 LI Hao-jun;ZHANG Peng-wei;LIU Zhong-feng;ZHANG Zheng(College of Education Science and Technology,Zhejiang University of Technology,Hangzhou 310023,China)
出处 《小型微型计算机系统》 CSCD 北大核心 2018年第11期2413-2418,共6页 Journal of Chinese Computer Systems
基金 2016年国家社科基金年度项目(16B7Q084)资助
关键词 多目标粒子群优化算法 分解策略 二次强化学习策略 邻居均值学习 MOPSO decomposition strategy quadratic reinforcement learning strategy neighborhood mean learning
  • 相关文献

参考文献2

二级参考文献13

  • 1尚荣华,焦李成,公茂果,马文萍.免疫克隆算法求解动态多目标优化问题[J].软件学报,2007,18(11):2700-2711. 被引量:32
  • 2Farina M, Deb K, Amato P. Dynamic multi-objective optimization problems: Test cases, approximations, and applications [ J ]. IEEE Trans. on Evolutionary Computation ,2004,8(5 ) :425-442.
  • 3Deb K, Kaxthik S. Dynamic multi-objective optimization and deci- sion-making using modified NSGA-Ⅱ:a case study on hydro-ther- mal power scheduling [ C ]. In:Evolutionary Multi-Criterion Optimi- zation, Proceedings of Matsushima, Japan,2007 : 803 -817.
  • 4Gob C K, Tan K C. A competitive-cooperative co-evolutionary par- adigm for dynamic multi-objective optimization [ J ]. IEEE Trans. On Evolutionary Computation ,2009,13 ( 1 ) : 103-127.
  • 5Koo W T, Gob C K, Tan K C. A predictive gradient strategy for multi-objective evolutionary algorithms in a fast changing environ- ment[ J ]. Memetic Computing,2010,2 ( 2 ) :87-110.
  • 6Coello C C, Lamont G B, Van Veldhuizen D A. Evolutionary algo- rithms for solving multi-objective problems [ M ]. Springer Science & Business Media,2007.
  • 7Kennedy J, Eberhart R C. Particle swarm optimization [ C 1. In: IEEE International Conference on Neural Networks, Proceedings of Washington, DC, USA, 1995,4 : 1942-1948.
  • 8Liang J J,Qu B Y,Suganthan P N,et al. Dynamic multi-swarm par- ticle swarm optimization for multi-objective optimization problems [ C ]. In:IEEE World Congress on Computational Intelligence, Pro- ceedings of Brisbane,Australia,2012 : 1-8.
  • 9Sierra M R, Coello C A C. Improving PSO-based multi-objective optimization using crowding, mutation and dominance [ C ]. In: Springer Berlin Heidelberg, Evolutionary Multi-Criterion Optimiza- tion, Proceedings of Guanajuato, Mexico,2005:505 -519.
  • 10Li X, Branke J, Kirley M. On performance metrics and particle swarm methods for dynamic multi-objective optimization problems [ C ]. In: IEEE Congress on Evolutionary Computation, Proceedings of Singapore,2007:576-583.

共引文献6

同被引文献27

引证文献2

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部