期刊文献+

气凝胶玻璃太阳辐射传递及传热简化分析 被引量:3

Analysis of Simplified Solar Radiation Transmission and Heat Transfer in Aerogel Glazing System
原文传递
导出
摘要 纳米气凝胶材料逐渐被推广和应用于节能玻璃领域,但目前的建筑模拟软件尚不具备计算气凝胶玻璃光、热、辐射传递的功能。本文建立了气凝胶玻璃的动态传热详细计算模型和太阳辐射传递详细计算模型,实验验证了模型的准确性,给出了气凝胶玻璃的K-Sc计算方法、太阳辐射传递和传热的简化计算方法模型。以长沙的气象参数作为计算条件对比分析了详细模型、简化模型及K-Sc模型在不同天气和朝向下的计算准确性,结果表明:在阴天,简化模型有较好的准确性。在晴天,比较各个朝向一天的累计室内得热量,简化模型的计算值均比详细模型偏高,在南朝向误差最大为15.4%。简化模型的准确度均优于K-Sc模型。 Nano-aerogel has been gradually popularized and applied to energy-saving windows, but it is still unable to calculate the light, heat and radiation transfer in aerogel glazing system with existing building simulation software. In this paper, we establish a detailed calculation model of dynamic heat transfer and a detailed calculation model of solar radiation transmission of aerogel glazing system, the accuracy of which has been validated by an experiment. The simplified calculation method model of K-Sc, solar radiation transmission and heat transfer of aerogel glazing system is given. Meteorological parameters of Changsha are used as calculation conditions to compare and analyze the accuracy of the detailed model, the simplified model and the K-Sc model under different weather conditions and orientations. Results show that on cloudy days, the simplified model is accurate, while on sunny days, the calculated cumulative daily indoor heat gains for the simplified model are always higher than that of the detailed model, with a maximum error of 15.4% in the south direction. Furthermore, the accuracy of the simplified model is superior to that of K-Sc model.
作者 郑东梅 陈友明 刘洋 肖亚玲 胡磊 ZHENG Dongmei;CHEN Youming;LIU Yang;XIAO Yaling;HU Lei(Hunan University,Changsha 410082,China)
机构地区 湖南大学
出处 《建筑科学》 CSCD 北大核心 2018年第10期58-65,共8页 Building Science
基金 国家重点课题研发计划"建筑本体与建筑能耗耦合计算模型开发"(2017YFC0702201)
关键词 气凝胶玻璃 详细模型 简化模型 K-Sc模型 室内得热量 aerogel glazing system detailed model simplified model K-Sc model indoor heat gains
  • 相关文献

参考文献3

二级参考文献28

  • 1范恩荣.超轻气凝胶玻璃[J].科技信息(吉林),1996(2):14-14. 被引量:3
  • 2清华大学建筑节能研究中心.中国建筑节能年度发展研究报告2009[R].北京:中国建筑工业出版社,2009.
  • 3Kistler S S. Coherent expanded aerogels and jellies [J]. Nature, 1931 (127):741.
  • 4Peri J B.Infrared study of OH and NH2 groups on the surface of a dry silica aerogel [J].The Journal of Physical Chemistry,1966,70 (9): 2937-2945.
  • 5Tewari P H, Hunt A J, Loftlus K D.Ambient-temperature supercritical drying of tansparent silica aerogels [J]. Materials Letters, 1985, 3(9-10): 363-367.
  • 6Wu H J, Fan J, Du N.Thermal energy transport within porous polymer materials:Effects of fiber characteristics [J].Journal of Applied Polymer Science, 2007,106(1 ):576-583.
  • 7Wu H J, Fan J, Du N. Porous materials with thin interlayers for optimal thermal insulation [J].International Journal of Nonlinear Sciences and Numerical Simulation,2009,10(3):291-300.
  • 8Wu H J, Fan J T, Qin X H, et al. Fabrication and characterization of a novel polypropylene/poly (vinyl alcohol)/aluminum hybrid layered assembly for high-performance fibrous insulation[J].Journal of Applied Polymer Science, 2008,110(4):2525-2530.
  • 9Hwang S W, Jung H H, Hyun S H, et al. Effective preparation of crack-free silica aerogels via ambient drying[J]. Journal of Sol-Gel Science and Technology,2007(41): 139-146.
  • 10Reim M, Beck A, Komer W, et al. Highly insulating aerogel glazing for solar energy usage[J]. Solar Energy,2002,72(1):21-29.

共引文献69

同被引文献17

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部