期刊文献+

BP神经网络对斜轧穿孔轧制力的预测 被引量:8

Prediction on rolling force of oblique rolling piercing based on BP neural network
原文传递
导出
摘要 为了有效预测AZ31镁合金管坯在三辊斜轧穿孔变形区的轧制力,保证穿孔后镁合金管材的优良性能,借助MATLAB工具箱建立了三辊斜轧穿孔的BP神经网络模型。结合穿孔过程中影响轧制力的因素,从实际生产过程中抽取了325个数据作为试验样本;根据AZ31镁合金在不同穿孔参数下的变形特点和三辊穿孔的有限元结果分析,利用轧制力的经验公式实现了理论计算,并将预测结果与理论结果进行了对比。结果表明:实际值与计算值的误差为14%,网络预测的最大误差为5%,平均误差为2. 4%,最小误差为1.4%。因此,网络预报精度高,操作简洁,可以代替复杂的数学计算模型。 In order to predict the rolling force of AZ31 magnesium alloy tube billet in the oblique rolling piercing deformation zone with three-roller effectively and ensure the excellent performance of magnesium alloy tube after piercing,the BP neural network model of oblique rolling piercing with three-roller was established by MATLAB toolbox. Combined with the factors affecting the rolling force in the piercing process,three hundred and twenty-five data extracted from the actual production process were applied into experiment simples.According to the deformation characteristics of AZ31 magnesium alloy with different piercing parameters and the finite element analysis result of three-roller piercing,the theoretical calculation was realized by the empirical formula of rolling force,and the predicted results were compared with the theoretical results. The results show that the error between the actual value and the calculated value is 14%,the maximum error of the network prediction is 5%,the average error is 2.4% and the minimum error is 1.4%. Thus,the network prediction has high precision and simple operation,and the complex mathematical calculation model can be replaced.
作者 林伟路 丁小凤 双远华 Lin Weilu;Ding Xiaofeng;Shuang Yuanhua(College of Materials Science and Engineering,Taiyuan University of Science and Technology,Taiyuan 030024,China)
出处 《锻压技术》 CAS CSCD 北大核心 2018年第10期175-178,共4页 Forging & Stamping Technology
基金 山西省留学基金资助项目(2017-084)
关键词 BP神经网络 AZ31镁合金 斜轧穿孔 轧制力 MATLAB工具箱 BP neural network AZ31 magnesium alloy oblique rolling piercing rolling force MATLAB toolbox
  • 相关文献

参考文献6

二级参考文献26

  • 1袁晓辉,袁艳斌,王乘,张勇传.一种新型的自适应混沌遗传算法[J].电子学报,2006,34(4):708-712. 被引量:48
  • 2焦李成.神经网络系统理论[M].西安:西安电子科技大学出版社,1996..
  • 3飞思科技术产品研发中心.神经网络理论与MATLAB7实现[M].北京:电子工业出版社,2005,3:18-23.
  • 4Joon- Sik Son, Duk- Man Lee, Ill-Soo Kim, Seung- Gap Choi.A study on on - line learning neural network for prediction for rolling force in hot- rolling mill[J]. Journal of Materials Processing Technology, 2007, 164- 165(15):1612- 1617.
  • 5Duk Man Lee, S. G. Choi. Application of on- line adaptable Neural Network for the rolling force set - up of a plate mill[J]. Engineering Applications Artificial Intelligence, 2007, 17(5) : 557 - 565.
  • 6[2]Dayhoff J E,Deleo J M.Artificial neural networks[J].Cancer,2001,9l(8):1615-1634.
  • 7李海军,王国栋,徐建忠,刘相华.使用变尺度混合遗传算法进行热轧负荷分配优化[J].钢铁研究学报,2007,19(8):33-36. 被引量:6
  • 8Draeger A, Engell S, Ranke H. Model Predictive Control Using Neural Networks [J]. Control Systems Magazine IEEE, 1995, 15 (10):61-66.
  • 9Su Junjie, Zhong qiuhai, Xu Jiping. Research on the prediction of breath period signal based on RFN network of self-adaptive genetic algorithm [ C ] ff Control Conference, 2010 : 2323- 2327.
  • 10Jing Li, Han Rui feng. Notice of Retraction A Self-Adaptive Genetic Algorithm Based on Real-Coded [ J ]. Biomedical Engineering and Computer Science(ICBECS) ,2010( 1 ) : 1-4.

共引文献340

同被引文献75

引证文献8

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部