期刊文献+

基于PSO的轨道交通列车节能控制优化研究 被引量:7

Study on Energy-saving Control Optimization for Rail Transit Train Based on PSO
下载PDF
导出
摘要 针对当前列车节能控制智能优化研究中广泛采用遗传算法,但存在算子多、收敛速度不快的问题,采用粒子群算法结合罚函数法思想进行研究。通过对列车运行过程及列车牵引、巡航、惰行和制动阶段能耗状态的分析,给出列车节能控制的多约束优化数学模型和牵引能耗的计算方法。基于罚函数将该问题转化为无约束优化问题,并采用粒子群算法寻优求解,从而得出可使列车运行能耗最小的工况转换点。仿真结果表明,与改进的遗传退火算法相比,算法节能效果更优,且具有良好的收敛速度。 Currently, the genetic algorithms are widely adopted in the research of intelligent optimization of train energy-saving control. Since the genetic algorithms have many operators and may converge slowly, the particle swarm optimization (PSO) algorithm combined with the penalty function method is used in this paper. Through the analysis on the train operation process and the energy consumption of the train during the four stages, i.e. traction, cruise, coasting and braking, a multi-constraint optimization mathematical model of train energy-saving control is established and the calculation method of traction energy consumption is also given. The problem is converted into an unconstrained one by using penalty functions and then solved by the PSO algorithm to obtain the operation mode transition points which can minimize the operation energy-consumption of the train. The simulation shows that the proposed method gains a better energy-saving effect compared to the modified genetic algorithm-simulated annealing method (MGASA) and has a fast rate of convergence.
作者 李烨 郭子立 郭奕杉 LI Ye;GUO Zi-li;GUO Yi-shan(School of Optical-Electrical and Computer Engineering,University of Shanghai for Science and Technology,Shanghai 200093,China)
出处 《控制工程》 CSCD 北大核心 2018年第10期1911-1915,共5页 Control Engineering of China
基金 沪江基金(C14002)
关键词 轨道交通 节能控制 工况转换 粒子群算法 罚函数法 Rail transit energy-saving control operation mode transition particle swarm optimization penalty function method
  • 相关文献

参考文献10

二级参考文献156

共引文献516

同被引文献62

引证文献7

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部