期刊文献+

生物炭添加对曝气人工湿地脱氮及氧化亚氮释放的影响 被引量:18

Impact of Biochar on Nitrogen Removal and Nitrous Oxide Emission in Aerated Vertical Flow Constructed Wetland
原文传递
导出
摘要 尽管增加曝气会提升潜流人工湿地中溶解氧(DO)浓度,改善污染物去除效果,但由于湿地中氧扩散条件差,易引起DO分布不均,导致氧化亚氮(N_2O)的排放.生物炭由于孔隙率大、比表面积大,近年来逐渐被应用于传统湿地系统,实现强化脱氮和温室气体减排.为了探讨生物炭对曝气潜流湿地的影响,本实验在温室内构建曝气生物炭潜流湿地(SW),以常规曝气潜流湿地(CW)作为参照,探究生物炭投加对湿地系统脱氮性能及N_2O排放的影响.结果表明,SW系统曝气段平均DO浓度为2.66 mg·L^(-1),较CW提高了0.42 mg·L^(-1).SW系统平均出水NH_4^+-N和总氮(TN)浓度为0.17 mg·L^(-1)和1.98 mg·L^(-1),去除率分别达到99.5%和95.0%,较CW提高了5.1%和6.9%.生物炭的投加对湿地系统有机物污染去除效果无显著影响(P>0.05),出水化学需氧量(COD)稳定在25 mg·L^(-1),去除率达到94.0%.SW系统中N_2O的平均释放速率为0.27 mg·(m^2·h)^(-1),较CW系统降低了70.7%.因此,生物炭投加可作为一种有效的控制手段来强化曝气湿地系统脱氮,实现N_2O气体减排. In an intermittent aerated vertical flow constructed wetland, the dissolved oxygen( DO) distribution tends to be inhomogeneous because of poor diffusivity resulting in the production and emission of nitrous oxide( N2O). As a multifunctional environmental material with numerous porosities and a large specific area,biochar has been recently applied to enhance pollutant removal and reduce greenhouse gas emissions in traditional wetland systems. Using the conventional aerated vertical flow constructed wetlands( CW) as the comparison,biochar-amended wetland microcosms( SW) were built in greenhouses to investigate the influence of biochar on nitrogen removal and N2O emissions. The results showed that DO concentration in the aeration stage increased by 0. 42 mg·L^-1 in SW. Furthermore,SW achieved higher removal efficiencies for NH4^+-N( 99. 5%) and total nitrogen( TN; 95. 0%) than CW. Similar removal rates of chemical oxygen demand( COD),close to 94%,were observed in CW and SW,indicating that no significant effects resulted from adding biochar( P〉 0. 05). Additionally, N2O emission fluxes of CW and SW were 0. 92 mg·( m^2·h)^-1 and 0. 27 mg·( m^2·h)^-1,respectively. The N2O cumulative emission in SW was 6. 58 mg·m^-2,which was significantly lower than that in CW( 22. 03 mg·m^-2). Biochar addition could be an effective strategy to promote nitrogen removal and reduce N2O emissions.
作者 王宁 黄磊 罗星 梁岩 王燕 陈玉成 WANG Ning;HUANG Lei;LUO Xing;LIANG Yan;WANG Yan;CHEN Yu-cheng(College of Resources & Environment,Southwest University,Chongqing 400715,China;Chongqing Engineering Research Center of Rural Cleaning,Chongqing 400716,China)
出处 《环境科学》 EI CAS CSCD 北大核心 2018年第10期4505-4511,共7页 Environmental Science
基金 国家自然科学基金项目(51408493) 重庆市基础与前沿研究计划项目(cstc2016jcyj A0523) 西南大学资源环境学院"光炯"创新项目(201717)
关键词 生物炭 潜流人工湿地 间歇曝气 脱氮 氧化亚氮释放 biochar subsurface flow constructed wetland intermittent aeration nitrogen removal nitrous oxide emission
  • 相关文献

参考文献3

二级参考文献46

  • 1陈滢,彭永臻,刘敏,甘一萍,王淑莹.SBR法处理生活污水时非丝状菌污泥膨胀的发生与控制[J].环境科学学报,2005,25(1):105-108. 被引量:37
  • 2陈安稳,时翔云,于鲁冀,王翔,章显.污泥膨胀的原因及其控制方法[J].中国农学通报,2006,22(12):296-299. 被引量:17
  • 3张可方,杜馨,张朝升,方茜.DO C/N对同步硝化反硝化影响的试验研究[J].环境科学与技术,2007,30(6):3-5. 被引量:30
  • 4Arias C A,Del Bubba M,Brix H,2001. Phosphorus removal bysands for use as media in subsurface flow constructed reedbeds. Water Research,35(5): 1159-1168.
  • 5Bodelier P L E,Libochant J A,Blom C W P M,LaanbroekH J,1996. Dynamics of nitrification and denitrificationin root-oxygenated sediments and adaptation of ammonia-oxidizing bacteria to low-oxygen or anoxic habitats.Applied and Environmental Microbiology,62(11): 4100-4107.
  • 6Braskerud B C,2002. Factors affecting phosphorus retention insmall constructed wetlands treating agricultural non-pointsource pollution. Ecological Engineering,19(1): 41-61.
  • 7Brix H,1997. Do macrophytes play a role in constructedtreatment wetlands? Water Science and Technology,35(5):11-17.
  • 8Bu H M,Tan X,Li S Y,Zhang Q F,2010. Temporal and spatialvariations of water quality in the Jinshui River of the SouthQinling Mts.,China. Ecotoxicology and EnvironmentalSafety,73(5): 907-913.
  • 9Calheiros C S C,Rangel A O S S,Castro P M L,2007. Construct-ed wetland systems vegetated with different plants appliedto the treatment of tannery wastewater. Water Research,41(8): 1790-1798.
  • 10De-Bashan L E,Bashan Y,2004. Recent advances in removingphosphorus from wastewater and its future use as fertilizer(1997-2003). Water Research,38(19): 4222-4246.

共引文献96

同被引文献196

引证文献18

二级引证文献54

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部