期刊文献+

地铁节能运行优化方法研究

Research on Optimization Method of Subway Energy Saving Operation
原文传递
导出
摘要 地铁运输系统的能耗在公共交通系统占比最大,实现地铁节能运行具有重要的意义。合理选取工况转换点是地铁节能运行的关键,本文在正点、精确停车和安全运行的条件下建立了选取工况转换点的优化模型,将基于实数编码的遗传算法编入列车运行计算系统,实现了在既有线路的下站间最佳工况转换点的自动计算。在仿真计算中,优化了列车运行工况转换,使得列车能耗在既有条件基础上降低了5.6%,实现了地铁的节能运行,这对于地铁系统提高其自身的经济效益和社会效益具有一定的指导意义。 Energy consumption of subway transportation system is the largest in public transport system, realizing the energy saving operation of the subway is of great significance. Reasonable selection of operating conditions is the key to the subway energy saving operation. In the punctual and accurate parking and safe operation conditions established selected conditions of the conversion of the optimization model and incorporated real coding based on genetic algorithm into the train operation calculation system to Automatic calculation of the optimal operating mode transition point in the condition of existing lines. In the simulation, the conversion of train running condition is optimized, and the energy consumption is reduced by 5.6% compared with the existing method to achieve the energy saving operation of the subway, which has a certain guiding significance for the subway system to improve its own economic and social benefits.
作者 黄兴建 曹燕 HUANG Xingjian;CAO Yan(School of Transportation and Logistics,Southwest Jiao Tong University,Chengdu 610031,China)
出处 《综合运输》 2018年第9期81-85,115,共6页 China Transportation Review
关键词 地铁运输 能耗 节能运行 工况转换 遗传算法 Subway transportation Energy consumption Energy saving operation Working conditionconversion Genetic algorithm
  • 相关文献

参考文献4

二级参考文献26

  • 1丁勇,毛保华,刘海东,王铁城,张鑫.定时约束条件下列车节能操纵的仿真算法研究[J].系统仿真学报,2004,16(10):2241-2244. 被引量:44
  • 2李玉生,侯忠生.基于遗传算法的列车节能控制研究[J].系统仿真学报,2007,19(2):384-387. 被引量:34
  • 3Chang C S,Sire S S.Optimising Train Movements through Coast Control Using Genetic Algorithms[J].IEE ProceedingsElectric Power Application,1997,144 (1):65-73.
  • 4Han S H,Byen Y S,Back J H,et al.An Optimal Automatic Train Operation (ATO) Control Using Genetic Algorithm (GA)[C] / /TENCO] 99.Proceedings of the IEEE Region 10 Conference.Cheju Island,1999(1):360-362.
  • 5Wong K K,Ho T K.Coast Control of Train Movement with Genetic Algorithm[J].Evolutionary Computation,2003(2):1280-1287.
  • 6丁勇.列车运行计算与操纵优化模拟系统的研究[D].北京:北京交通大学,2005.
  • 7Howlett P G,Pudney P J.Energy-efficient train control[M].Springer,1995.
  • 8Yasunobu S,et a1.Application of predictive fuzzy control to automatic train operation controller[C].Proceedings of Industrial Electronics Control and Instrumentation,Tokyo.Japan.1984:657-662.
  • 9Chang C S,Sim S S.Optimizing train movements through coast control using genetic algorithms[J].IEE Proc.-Electr.Power App1,1997,144 (1):65-73.
  • 10Wong K K,Ho T K.Coast control for mass rapid transit railways with searching methods[J].IEE Proc.Electr.Power Appl.,2004,151(3):365-376.

共引文献108

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部