期刊文献+

基于归一化RSS和约束WKNN的WiFi指纹定位算法 被引量:6

WiFi fingerprint localization algorithm based on normalized RSS and constraint WKNN
下载PDF
导出
摘要 针对基于加权K最近邻(WKNN)的WiFi指纹定位算法精度低的问题,提出了基于归一化接收信号强度(RSS)和约束WKNN的WiFi指纹定位算法。采用高斯滤波对离线阶段和在线阶段采集的RSS值去噪,降低信号的随机误差,并建立位置指纹库(radio map);采用基于4—域系统的WKNN算法匹配定位,防止离待测点较远的参考点参与匹配造成的误差。实验结果表明:改进后的WiFi指纹定位算法可以更好地估计用户的实际位置,平均定位误差降低了19.4%。 Aiming at the problem of low positioning precision of WiFi fingerprint positioning algorithm based on weighted K-nearest neighbor( WKNN),a WiFi fingerprint localization algorithm based on the normalized received signal strength( RSS) and constraint WKNN is proposed. Use Gaussian filtering for denoising on RSS value acquired in offline and online stage,decrease the random error of signal,and construct radio map; WKNN algorithm based on 4-domain system is used to match and locate,to prevent the reference points far from the specific points to participate in the match,so as to results in error. The experimental results show that the improved WiFi fingerprint positioning algorithm can better estimate the user 's actual location,the average positioning error is reduced by 19. 4 %.
作者 冯涛 阮超 郭凯旋 卢彦霖 余敏 FENG Tao;RUAN Chao;GUO Kai-xuan;LU Yan-lin;YU Min(School of Computer Information and Engineering,Jiangxi Normal University,Nanehang 330022,China;School of Software,Jiangxi Normal University,Nanchang 330022,China)
出处 《传感器与微系统》 CSCD 2018年第10期127-129,共3页 Transducer and Microsystem Technologies
基金 国家自然科学基金资助项目(41374039) 国家重点研发计划课题资助项目(2016YFB0502204)
关键词 归一化 高斯滤波 加权K最近邻 4—域系统 WiFi指纹 normalization Gaussian filtering weighted K-nearest neighbor (WKNN) 4-domain system WiFi fingerprint
  • 相关文献

参考文献7

二级参考文献92

  • 1方震,赵湛,郭鹏,张玉国.基于RSSI测距分析[J].传感技术学报,2007,20(11):2526-2530. 被引量:265
  • 2张明华,张申生,曹健.无线局域网中基于信号强度的室内定位[J].计算机科学,2007,34(6):68-71. 被引量:66
  • 3朱剑,赵海,孙佩刚,毕远国.基于RSSI均值的等边三角形定位算法[J].东北大学学报(自然科学版),2007,28(8):1094-1097. 被引量:76
  • 4Pahlavan K, Li Xinrong. Indoor Geo-location Sci-ence and Technology [ J ]. IEEE CommunicationsMagazine,2002,40(2) : 112-118.
  • 5Jaegeol Yim. Introducing a Decision Tree-based In-door Positioning Technique [J]. Expert Systems-with Applications , 2008,34(2) : 1 296-1 302.
  • 6Ling Pei, Chen Ruizhi, Liu Jingbin. Using Inquiry-based Bluetooth RSSI Probability Distributions forIndoor Positioning[J], Journal of Global Positio-ning Systems , 2010 .9(2) : 122-130.
  • 7Ling Pei, Chen Ruizhi, Liu Jingbin. Inquiry-basedBluetooth Indoor Positioning via RSSI ProbabilityDistributions[C]. 2010 Second International Con-ference on Advances in Satellite and Space Commu-nications, TBD,Athens, Greece,2010.
  • 8Honkavirta V,PeralaT, Ali-Loytty S. A Compara-tive Survey of WLAN Location FingerprintingMethods[C]. Positioning, Navigation and Commu-nication, Hannover, Germany 2009.
  • 9Yousse F,Agrawala M A, Shankar A, et al. AProbabilistic Clustering-Based Indoor Location De-termination System[R]. Technical Reports of theComputer Science Department, Washington D C,2002.
  • 10Yousse F, Agrawala M A,Udaya Shankar A, etal. Location Determination via Clustering and Prob-ability Distributions[C]. The First IEEE Interna-tional Conference on Pervasive Computing and Com-munications, Forth Worth, Texas,USA, 2003.

共引文献192

同被引文献38

引证文献6

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部