摘要
为解决当前无线传感网信号定位算法易受瑞利噪声影响,且其采用的半径扫描旋转定位机制在高衰落信道条件下难以消除定位角度误差,导致定位精度较低的缺陷,本文研究了鉴于正交矩阵联合单一滤波制度的无线传感网信息定位方案:首先,通过基准节点以及有关接收节点的位置关系,构建正交矩阵定位结构,用来接收待测节点发送的信号,并根据接受节点与待测节点的角度,对获取的待测节点子信号进行初步定位,减少接收节点定位待测节点的角度误差;随后,依据接收节点与待测节点的角度估计,构建联合独立滤波机制,采取功率谱密度函数计算定位过程中定位角度的平均估计,从而实现了对角度估计的优化,提高了信号定位精度.仿真实验表明:与JISA算法及NP-CPLA算法相比,本文算法具有较好的抗噪能力,其定位精度与效率更高,而定位误差更低.
In order to solve the current wireless sensor network signal positioning algorithm vulnerable to noise and the radius scanning positioning and rotation of the difficult to eliminate the orientation angle error and precision improve mechanisms of space-time poor convergence performance etc. problem, an orthogonal matrix joint independent filtering mechanism of wireless sensor network signal positioning algorithm based on is proposed in this paper. First, according to the reference node and receiving node position in relation to the construction of orthogonal matrix positioning structure, receive detected nodes transmit signal and according to the received node and the measured angle of nodes is used to calculate the location of the preliminary, reduce the receiving node localization angle error of the node to be measured; subsequently,according to the receiving nodes and unknown nodes angle estimation construct joint independent filtering mechanism, positioning in the process of localization angle averaged numerical calculation, so as to realize the upgrading of angle estimation accuracy, improve the accurate degree of data. Simulation results show that the positioning data with the traditional JISA delivery, reduce the localization error, improve positioning accuracy.
作者
米洪
杨习贝
MI Hong;YANG Xibei(Nanjing Vocational InstitUte of Transport Technology,Nanjing jiangsu 211188,China;Jiangsu University of Science and Technology,zhenjiang jiangsu 212003,China)
出处
《新疆大学学报(自然科学版)》
CAS
2018年第3期333-339,共7页
Journal of Xinjiang University(Natural Science Edition)
基金
国家自然科学基金(61572242)
关键词
无线传感网络
独立滤波机制
正交矩阵定位
基准节点
角度估计
瑞利噪声
wireless sensor networks
independent filtering mechanism
orthogonal matrix location
reference node
angle estimation
rayleigh noise