期刊文献+

云数据中心基于阈值的虚拟机迁移节能调度算法 被引量:11

Threshold-based energy-efficient VM scheduling in cloud datacenters
原文传递
导出
摘要 针对采用虚拟机迁移技术在云计算数据中心同时考虑能耗与服务等级协议(SLA)违约优化的问题,提出一种基于阈值的虚拟机部署节能算法(THRSD-MMT).该算法通过对虚拟机运行状态的统计分析,估算虚拟机所需中央处理器(CPU)性能需求(每秒处理百万条指令数MIPS)的期望值与标准差,进而动态地计算主机所需MIPS数量;同时,算法结合静态阈值的设置,以便更准确地预测主机的违约情况并判断虚拟机迁移的时机,从而能够在降低SLA违约的同时减少能耗.实验结果表明:与其他算法相比,提出的算法能够显著降低SLA违约率并节能,具有较好的综合性能. To address the problem that utilizing the VM(virtual machine) live migration technique to simultaneously reduce the energy consumption and the SLA(service level agreements) violation ratio,an energy-efficient VM deployment algorithm that based on a dynamic prediction policy and a static utilization thresholds(THRSD-MMT) was proposed.By the statistical data analyzing of the historical running state of the VMs,the proposed algorithm firstly calculated the expectations and the standard deviations of the central processing unit(CPU) capacity(MIPS) requested by the VMs.Then,the dynamic CPU capacity(MIPS) requested by each host was dynamically evaluated.Furthermore,by integrating dynamic estimation and the static threshold,the algorithm was able to predict the potential SLA violation and determine when the VMs could be migrated more accurately,such that the energy consumption and the SLA violation ratio could both be optimized.The experimental results demonstrate that comparing with other algorithms,and the proposed algorithm can significantly reduce the SLA violation ratio and achieve better comprehensive performance.
作者 吴小东 韩建军 Wu Xiaodong;Han Jianjun(la Faculty of Mathematics and Computer Science/b Fujian Provincial Key Laboratory of Data Intensive Computing/c Key Laboratory of Intelligent Computing and Information Processing,Quanzhou Normal University,Quanzhou 362000,Fujian Chin;School of Computer Science and Technology,Huazhong University of Science and Technology,Wuhan 430074,China)
出处 《华中科技大学学报(自然科学版)》 EI CAS CSCD 北大核心 2018年第9期30-34,共5页 Journal of Huazhong University of Science and Technology(Natural Science Edition)
基金 国家自然科学基金资助项目(61472150) 福建省自然科学基金资助项目(2015J01663)
关键词 虚拟机迁移 节能调度 数据中心 云计算 虚拟化 virtual machine migration energy-efficient scheduling data center cloud computing virtualization
  • 相关文献

参考文献2

二级参考文献10

  • 1Wu Yong-wei, Hwang Kai, Yuan Yu-lai, et al.. Adaptive workload prediction of grid performance in confidence windows[J]. IEEE Transactions on Parallel and Distributed Systems, 2010, 21(7): 925-938.
  • 2Gmach D, Rolia J, Cherkasova L, et al.. Workload analysi: and demand prediction of enterprise data cente: applications[C]. Proceedings of the 2007 IEEE 10tl International Symposium on Workload Characterization Washington, 2007: 171-180.
  • 3Ganapathi A, Chen Y, Fox workload modeling for the Workshop on Self-Managing 2010), California, 2010:87 92. A, et al. cloud[C]. Statistics-driven Proceedings of Systems (SMDB.
  • 4Khan A, Yah Xi-feng, Tao Shu, et al.. Workload characterization and prediction in the cloud: a multiple time series approach[C]. Proceedings of 3rd International Workshop on Cloud Management (CloudMan 2012), HAWAII. 2012: 1287-1294.
  • 5Roy N, Dubey A, and Gokhale A. Efficient autoscaling in the cloud using predictive models for workload forecasting[C1. Proceedings of the 2011 IEEE 4th International Conference on Cloud Computing (CLOUD'll), Washington, 2011:500 507.
  • 6Xu Jing and Fortes J A B. Multi-objective virtual machine placement in virtualized data center environments[C]. Proceedings of the 2010 IEEE/ACM International Conference on Green Computing and Communications & International Conference on Cyber, Physical and Social Computing (GREENCOM-CPSCOM'10), Washington, 2010: 179-188.
  • 7Wang Meng, Meng Xiao-qiao, and Zhang Li. Consolidating virtual machines with dynamic bandwidth demand in data centers[C]. Proceedings of the 30th IEEE International Conference on Computer Communications (INFOCOM 2011), Shanghai, 2010:2"1 75.
  • 8Beloglazov A and Buyya R. Adaptive threshold-based approach for energy-efficient consolidation of virtual machines in cloud data centers[C]. Proceedings of the 8th International Workshop on Middleware for Grids, Clouds and e-Science (MGC'10), New York, 2010:4:1 4:6.
  • 9Beloglazov A and Buyya R. Optimal online deterministic algorithms and adaptive heuristics for energy and performance efficient dynamic consolidation of virtual machines in cloud data centersfJ]. Concurrency and Computation: Practice and Experience ( CCPE), 2012, 24(13) 1397-1420.
  • 10Calheiros R N, Ranjan R, Beloglazov A, et al.. CloudSim: a toolkit for modeling and simulation of cloud computing environments and evaluation of resource provisioning algorithms[J]. Software: Practice and Experience ( SPE), 2010 41(1): 23-50.

共引文献34

同被引文献74

引证文献11

二级引证文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部