期刊文献+

基于改进粒子群优化算法的混沌系统参数估计 被引量:17

Parameter estimation for chaotic system based on improved particle swarm optimization algorithm
原文传递
导出
摘要 提出了一种改进的粒子群优化算法用于解决混沌系统的参数估计问题,从粒子种群的初始化、惯性权重调整策略、差分变异进化、粒子位置与飞行速度的越界处理、局部变尺度深度搜索5个方面对标准粒子群算法进行综合改进,合理有效平衡了算法的全局探索能力与局部开发能力.基准函数测试表明了该算法的全局搜索能力、可靠性及搜索速度都有很大改善,有效克服了标准粒子群算法的早熟收敛现象.以Lorenz混沌系统为例进行仿真实验,结果验证了所提方法的有效性. Parameter estimation for chaotic systems is a multi-dimensional variable optimization problem,which is one of the key issues in chaotic control and synchronization.An improved particle swarm optimization(IPSO) algorithm was proposed to solve the above mentioned problem.More specifically,the algorithm was comprehensively improved from the aspects of particle population initialization,inertia weight adjustment strategy,differential mutation operation,the boundary violation treatment of particle position and flight velocity as well as local variable-depth search.Therefore,the global exploration and the local exploitation of the algorithm are reasonably and effectively balanced.The experimental results of benchmark function tests show that the global optimization performance,the reliability performance and the search speed are greatly improved.Moreover,the premature convergence of the standard particle swarm algorithm could be effectively avoided.Taking Lorenz chaotic system as an example,the validity of IPSO is also demonstrated by the simulation results.
作者 石建平 李培生 刘国平 刘鹏 Shi Jianping;Li Peisheng;Liu Guoping;Liu Peng(School of Mechanical and Electrical Engineering,Nanchang University,Nanchang 330031,China;School of Electronic and Communication Engineering,Guiyang University,Guiyang 550005,China;School of College of Gems and Materials Technology,Hebei GEO University,Shijiazhuang 050031,China)
出处 《华中科技大学学报(自然科学版)》 EI CAS CSCD 北大核心 2018年第9期70-76,共7页 Journal of Huazhong University of Science and Technology(Natural Science Edition)
基金 国家自然科学基金资助项目(51566012) 贵州省联合基金资助项目(黔科合LH字[2015]7302号)
关键词 混沌系统 参数估计 粒子群优化 数值优化 LORENZ系统 综合改进 chaotic system parameter estimation particle swarm optimization numerical optimization Lorenz system compre-hensive improvement
  • 相关文献

参考文献3

二级参考文献37

  • 1沈捷,费树岷,刘怀.多移动机器人编队运动中的避障控制[J].上海交通大学学报,2002,36(z1):69-72. 被引量:4
  • 2程磊,郑秀娟,吴怀宇,张玉礼,王冬梅,王芬.基于领航者模式的多机器人行星式编队运动[J].华中科技大学学报(自然科学版),2011,39(S2):320-323. 被引量:3
  • 3符泰然,程晓舫,钟茂华,杨臧健.谱色测温法的温度场分区讨论[J].光谱学与光谱分析,2006,26(12):2166-2168. 被引量:5
  • 4李丽香,彭海朋,杨义先,王向东.基于混沌蚂蚁群算法的Lorenz混沌系统的参数估计[J].物理学报,2007,56(1):51-55. 被引量:26
  • 5Notarstefano G,Egerstedt M,Haque M.Containment in leader-follower networks with switching communication topologies[J].Automatica,2011,47(5):1035-1040.
  • 6Yu W W,Chen G R,Cao M.Distributed leader-follower flocking control for multi-agent dynamical systems with time-varying velocities[J].Systems and Control Letters,2010,59(9):543-552.
  • 7Ren D H,Lu G Z.Consideration on formation control[J].Control and Decision Making,2005,20(6):601-606.
  • 8Freslund J,Mataric M J.A general algorithm for robot formations using local sensing and minimal communication robotics and automation[J].IEEE Transactions on Robotics and Automation,2002,18(5):837-846.
  • 9Dong W J,Farrell Jay A.Decentralized cooperative control of multiple nonholonomic dynamic systems with uncertainty[J].Automatica,2009,45(3):706-710.
  • 10Raja P,Pugazhenthi S.Optimal path planning of mobile robots:a review[J].International Journal of Physical Sciences,2012,7(9):1314-1320.

共引文献18

同被引文献125

引证文献17

二级引证文献65

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部