摘要
提出了一种改进的粒子群优化算法用于解决混沌系统的参数估计问题,从粒子种群的初始化、惯性权重调整策略、差分变异进化、粒子位置与飞行速度的越界处理、局部变尺度深度搜索5个方面对标准粒子群算法进行综合改进,合理有效平衡了算法的全局探索能力与局部开发能力.基准函数测试表明了该算法的全局搜索能力、可靠性及搜索速度都有很大改善,有效克服了标准粒子群算法的早熟收敛现象.以Lorenz混沌系统为例进行仿真实验,结果验证了所提方法的有效性.
Parameter estimation for chaotic systems is a multi-dimensional variable optimization problem,which is one of the key issues in chaotic control and synchronization.An improved particle swarm optimization(IPSO) algorithm was proposed to solve the above mentioned problem.More specifically,the algorithm was comprehensively improved from the aspects of particle population initialization,inertia weight adjustment strategy,differential mutation operation,the boundary violation treatment of particle position and flight velocity as well as local variable-depth search.Therefore,the global exploration and the local exploitation of the algorithm are reasonably and effectively balanced.The experimental results of benchmark function tests show that the global optimization performance,the reliability performance and the search speed are greatly improved.Moreover,the premature convergence of the standard particle swarm algorithm could be effectively avoided.Taking Lorenz chaotic system as an example,the validity of IPSO is also demonstrated by the simulation results.
作者
石建平
李培生
刘国平
刘鹏
Shi Jianping;Li Peisheng;Liu Guoping;Liu Peng(School of Mechanical and Electrical Engineering,Nanchang University,Nanchang 330031,China;School of Electronic and Communication Engineering,Guiyang University,Guiyang 550005,China;School of College of Gems and Materials Technology,Hebei GEO University,Shijiazhuang 050031,China)
出处
《华中科技大学学报(自然科学版)》
EI
CAS
CSCD
北大核心
2018年第9期70-76,共7页
Journal of Huazhong University of Science and Technology(Natural Science Edition)
基金
国家自然科学基金资助项目(51566012)
贵州省联合基金资助项目(黔科合LH字[2015]7302号)
关键词
混沌系统
参数估计
粒子群优化
数值优化
LORENZ系统
综合改进
chaotic system
parameter estimation
particle swarm optimization
numerical optimization
Lorenz system
compre-hensive improvement