期刊文献+

不同电磁环境对HTcSQUID磁强计的噪声影响

Noise effects of different electromagnetic environments on HT_c SQUID magnetometer
原文传递
导出
摘要 当前的电磁环境受到大量数字移动通信设备干扰,面对微小信号的测量需求,在测量成本等各因素的制约下,无电磁屏蔽状态的HT_c SQUID磁强计的测量应用亟待发展。该环境下,为得到更精准的有效测量结果,探究不同环境噪声及各种电磁干扰对HT_c SQUID磁强计的影响是个重要的研究内容。采用统计方法对HTcSQUID磁强计在不同电磁环境下的检测输出数据进行分析和研究,通过环境噪声的幅度统计特性可看到输出信号中不同噪声干扰的特征,及环境噪声对HT_c SQUID磁强计的工作特性和低噪声检测能力的影响。 As the current electromagnetic environment is interfered by a large number of digital mobile communication e- quipment and with the limitation of various factors such as the cost of the measurement, the development of the application of the HTc SQUID magnetometer with no electromagnetic shielding is urgent, for the needs of the measurements of micro signals. Under such circumstances, exploring the influences of different environment noises and electromagnetic interferences on the HTc SQUID magnetometer is a highly possible way to obtain more accurate and effective measurement results. Through the analysis on the out- put data of the HTc SQUID magnetometer in different electromagnetic environments with statistical methods, the characteristics of different noise interferences in the output signal could be easily seen from the statistical results of the amplitude of the ambient noise. The results also show the impact of ambient noise on the working performance and low noise detection capabilities of HTc SQUID clearly.
作者 薛宇航 郭峥山 田东阁 朱子青 陈晓东 赵毅 马平 Xue Yuhang;Guo Zhengshan;Tian Dongge;Zhu Ziqing;Chen Xiaodong;Zhao Yi;Ma Ping(Applied Superconductivity Research Center of Peking University,State Key Laboratory for Artificial Microstructure and Mesoscopic Physics,School of Physics,Peking University,Beijing 100871,China)
出处 《低温与超导》 CAS 北大核心 2018年第10期1-6,18,共7页 Cryogenics and Superconductivity
基金 国家自然科学基金项目(61571019) 国家“十三五”重点研发计划项目(2017YFC0601900)资助.
关键词 HTcSQUID磁强计 电磁噪声 统计方法 HTc SQUID magnetometer Electromagnetic noise Statistical methods
  • 相关文献

参考文献5

二级参考文献47

  • 1马平 王继纯 等.第四界全国超导薄膜和超导电子学器件学术会议论文集[M].合肥:-,1998..
  • 2Schneidewind H,Manzel M,Bruchlos G,Kirsch K.2001 Supercon. Sci. Technol. 14.200.
  • 3Bednorz J G,Müller K A 1986 Z. Phys. B: Condens. Matter 64 189.
  • 4Wu M K,Ashburn J R,Torng C J,Hor P H,Meng R L,Gao L,Huang Z J,Wang Y Q,Chu C W 1987 Phys. Rev. Lett. 58,908.
  • 5Zimmerman J E,Beall J A,Cromar M W,Ono R H 1987 Appl. Phys. Lett. 51,617.
  • 6Daly K P,Dozier W D,Burch J F,Coons S B,Hu R,Platt C E,Simon R W.1991 Appl. Phys. Lett. 58,543.
  • 7Zhang Y,Mück H M,Herrmann K,Schubert J,Zander W,Braginski A I,Heiden C.1992 Appl. Phys. Lett. 60 645.
  • 8Zhang Y,Mück M,Braginski A I,Toepfer H.1994 Supercond. Sci. Technol. 7 269.
  • 9Zhang Y,Zander W,Schubert J,Rüders F,Soltner H,Banzet M,Wolters N,Zeng X H,Braginski A I.1997 Appl. Phys. Lett. 71 704.
  • 10谢飞翔,杨涛,马平,聂瑞娟,刘乐园,王福仁,王守证,王世光,戴远东.2002.中国专利 CN1352469.

共引文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部