期刊文献+

Remarkably enhanced water splitting activity of nickel foam due to simple immersion in a ferric nitrate solution 被引量:6

Remarkably enhanced water splitting activity of nickel foam due to simple immersion in a ferric nitrate solution
原文传递
导出
摘要 The development of a facile method to construct a high-performance electrode is of paramount importance to the application of alkaline water electrolysis. Here, we report that the activity of nickel foam (NF) towards the oxygen evolution reaction (OER) can be enhanced remarkably through simple immersion in a ferric nitrate (Fe(NOs)s) solution at room temperature. During this immersion process, the oxidation of the NF surface by NOs- ions increases the near-surface concentrations of OH- and Ni2+, which results in the in situ deposition of a highly active amorphous Ni-Fe hydroxide (a-NiFeOxHy) layer. Specifically the OER overpotential of the NF electrode decreases from 371 mV (bare NF) to 270 mV (@10 mA-cm-2 in 0.1 M KOH) after immersion in a 20 mM Fe(NOs)s solution for just I min. A longer immersion time results in further increased OER activity (196 mV@10 mA,cm-2 in 1 M KOH). The overall water splitting properties of the a-NiFeOxHy@NF electrode were evaluated using a two-electrode configuration. It is worth noting that the current density can reach 25 mA.cm-2 in 6 M KOH at an applied voltage of 1.5 V at room temperature. The development of a facile method to construct a high-performance electrode is of paramount importance to the application of alkaline water electrolysis. Here, we report that the activity of nickel foam (NF) towards the oxygen evolution reaction (OER) can be enhanced remarkably through simple immersion in a ferric nitrate (Fe(NOs)s) solution at room temperature. During this immersion process, the oxidation of the NF surface by NOs- ions increases the near-surface concentrations of OH- and Ni2+, which results in the in situ deposition of a highly active amorphous Ni-Fe hydroxide (a-NiFeOxHy) layer. Specifically the OER overpotential of the NF electrode decreases from 371 mV (bare NF) to 270 mV (@10 mA-cm-2 in 0.1 M KOH) after immersion in a 20 mM Fe(NOs)s solution for just I min. A longer immersion time results in further increased OER activity (196 mV@10 mA,cm-2 in 1 M KOH). The overall water splitting properties of the a-NiFeOxHy@NF electrode were evaluated using a two-electrode configuration. It is worth noting that the current density can reach 25 mA.cm-2 in 6 M KOH at an applied voltage of 1.5 V at room temperature.
出处 《Nano Research》 SCIE EI CAS CSCD 2018年第8期3959-3971,共13页 纳米研究(英文版)
关键词 oxygen evolution reaction water electrolysis CORROSION HYDROXIDE nickel foam oxygen evolution reaction water electrolysis corrosion hydroxide nickel foam
  • 相关文献

同被引文献18

引证文献6

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部