期刊文献+

The critical role of bulk density of graphene oxide in tuning its defect concentration through microwave-driven annealing

The critical role of bulk density of graphene oxide in tuning its defect concentration through microwave-driven annealing
下载PDF
导出
摘要 Controlling the concentration of defects in reduced graphene oxide (rGO) to tailor its electrical and physicochemical properties has remained a significant challenge. We report that extent of microwave (MW)-driven annealing of rGO is influenced significantly by its bulk density, which allows us to vary its defect density and crystallite size over wide ranges by controlling this parameter. Extent of anneal- ing was investigated by multiple techniques including Raman and X-ray photoelectron spectroscopies, and electrical conductivity measurements. Improved corrosion resistance of rGOs upon annealing was ex- amined by cyclic voltammetry in H_2SO_4 electrolyte and temperature-programmed oxidation of rGO. Our results indicate that a low bulk density of rGO facilitates defect annealing, yielding high-quality carbon with 99.3 wt% purity, oxidative resistance as high as graphite powder, and an electrical conductivity of 36,000 S m-1 in the compressed powder form. These results demonstrate a prospective synthesis route for tailor-made nanocarbons from rGO through MW-driven annealing. Controlling the concentration of defects in reduced graphene oxide (rGO) to tailor its electrical and physicochemical properties has remained a significant challenge. We report that extent of microwave (MW)-driven annealing of rGO is influenced significantly by its bulk density, which allows us to vary its defect density and crystallite size over wide ranges by controlling this parameter. Extent of anneal- ing was investigated by multiple techniques including Raman and X-ray photoelectron spectroscopies, and electrical conductivity measurements. Improved corrosion resistance of rGOs upon annealing was ex- amined by cyclic voltammetry in H_2SO_4 electrolyte and temperature-programmed oxidation of rGO. Our results indicate that a low bulk density of rGO facilitates defect annealing, yielding high-quality carbon with 99.3 wt% purity, oxidative resistance as high as graphite powder, and an electrical conductivity of 36,000 S m-1 in the compressed powder form. These results demonstrate a prospective synthesis route for tailor-made nanocarbons from rGO through MW-driven annealing.
出处 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2018年第5期1468-1474,共7页 能源化学(英文版)
基金 supported by "Nanotechnology Platform" Program of the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan supported by JSPS KAKENHI grant numbers 19656200, 26420774 and 16H04558
关键词 Carbon NANOCARBON 2D material Catalyst ELECTRODE Energy storage material Carbon Nanocarbon 2D material Catalyst Electrode Energy storage material
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部