期刊文献+

New insight into the ultra-long lifetime of excitons in organic-inorganic perovskite: Reverse intersystem crossing

New insight into the ultra-long lifetime of excitons in organic-inorganic perovskite:Reverse intersystem crossing
下载PDF
导出
摘要 Recently, an effective exciton diffusion length L exceeding 100μm has been reported for organic- inorganic halide perovskites owing to both the high mobility and ultra-long lifetime of the excitons; however, the origin of ultra-long L is still unclear in nature. In some photoelectric materials, reverse intersystem crossing (RISC) from the triplet to the singlet state can enhance the quantum yield of pho- toluminescence greatly. In this study, our theoretical investigation indicated that the energy difference △E_st between the singlet state and the triplet state of CH_3NH_3Pbl_3 was less than 0.1 eV, which represents one crucial prerequisite for the occurrence of RISC. Meanwhile, the experimental results showed that the photoluminescence lifetime increased with the increasing temperature, a typical feature of RISC. Based on this study, we put forward the hypothesis that the ultra-long lifetime of excitons in organic-inorganic halide perovskite might be caused by the RISC process. This may provide a new insight into the important photophysical properties of such novel photovoltaic materials. Recently, an effective exciton diffusion length L exceeding 100μm has been reported for organic- inorganic halide perovskites owing to both the high mobility and ultra-long lifetime of the excitons; however, the origin of ultra-long L is still unclear in nature. In some photoelectric materials, reverse intersystem crossing (RISC) from the triplet to the singlet state can enhance the quantum yield of pho- toluminescence greatly. In this study, our theoretical investigation indicated that the energy difference △E_st between the singlet state and the triplet state of CH_3NH_3Pbl_3 was less than 0.1 eV, which represents one crucial prerequisite for the occurrence of RISC. Meanwhile, the experimental results showed that the photoluminescence lifetime increased with the increasing temperature, a typical feature of RISC. Based on this study, we put forward the hypothesis that the ultra-long lifetime of excitons in organic-inorganic halide perovskite might be caused by the RISC process. This may provide a new insight into the important photophysical properties of such novel photovoltaic materials.
出处 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2018年第5期1496-1500,共5页 能源化学(英文版)
基金 The financial supports of the National Natural Science Foundation of China (grant nos. 21373042, 21677029 and 51402036) the Fundamental Research Funds for the Central Universities (grant no. DUT15YQ109)
关键词 Inorganic-organic halide perovskite PHOTOPHYSICS Photoluminescence Reverse intersystem crossing Ultra-long lifetime Inorganic-organic halide perovskite Photophysics Photoluminescence Reverse intersystem crossing Ultra-long lifetime
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部