摘要
Data analysis of sunspot oscillations based on a 6-hr SDO run of an observation showed that low frequency (0.2 〈ω 〈 1 mHz) oscillations are locally similar to three and five minute oscillations. The oscillations in the sunspot are concentrated in cells of a few arcsec, each of which has its own oscillation spectrum. The analysis of two scenarios for sunspot oscillations leads to a conclusion that local sunspot oscillations occur due to a subphotospheric resonator for slow MHD waves. Empirical models of a sunspot atmosphere and the theory of slow waves in thin magnetic flux tubes are applied to modeling the subphotospheric resonator. The spectrum of local oscillations consists of a great number of lines. This kind of spectrum can occur only if the subphotospheric resonator is a magnetic tube with a rather weak magnetic field. Magnetic tubes of this sort are umbral dots that appear due to the convective tongues in monolithic sunspots. The interrelation of local oscillations with umbral dots and wavefronts of traveling waves in sunspots is discussed.
Data analysis of sunspot oscillations based on a 6-hr SDO run of an observation showed that low frequency (0.2 〈ω 〈 1 mHz) oscillations are locally similar to three and five minute oscillations. The oscillations in the sunspot are concentrated in cells of a few arcsec, each of which has its own oscillation spectrum. The analysis of two scenarios for sunspot oscillations leads to a conclusion that local sunspot oscillations occur due to a subphotospheric resonator for slow MHD waves. Empirical models of a sunspot atmosphere and the theory of slow waves in thin magnetic flux tubes are applied to modeling the subphotospheric resonator. The spectrum of local oscillations consists of a great number of lines. This kind of spectrum can occur only if the subphotospheric resonator is a magnetic tube with a rather weak magnetic field. Magnetic tubes of this sort are umbral dots that appear due to the convective tongues in monolithic sunspots. The interrelation of local oscillations with umbral dots and wavefronts of traveling waves in sunspots is discussed.
基金
partially supported by the Ministry of Education and Science of the Russian Federation
the Siberian Branch of the Russian Academy of Sciences (Project II.16.3.2)
the Program of basic research of the RAS Presidium No.28
Goszadanie 2018 (No. 007-00163-18-00 of 12.01.2018)
supported by the Russian Foundation for Basic Research (RFBR)(No. 17-52-80064 BRICS-a)