期刊文献+

Extracting 21 cm signal by frequency and angular filtering

Extracting 21 cm signal by frequency and angular filtering
下载PDF
导出
摘要 Extracting the neutral hydrogen (HI) signal is a great challenge for cosmological 21 cm experiments; both the astrophysical foregrounds and receiver noise are typically several orders of magnitude greater than the 21 cm signal. However, the different properties of the 21 cm signal, foreground and noise can be exploited to separate these components. The foregrounds are generally smooth or correlated over the frequency space along a line of sight (LOS), while both the 21 cm signal and noise vary stochastically along the same LoS. The foreground can be removed by filtering out the smooth component in frequency space. The receiver noise is basically uncorrelated for observations at different times, hence for surveys it is also uncorrelated in different directions, while the 21 cm signal, which traces the large scale structure, is correlated up to certain scales. In this exercise, we apply Wiener filters in frequency and angular space to extract the 21 cm signals. We found that the method works well. Inaccurate knowl- edge about the beam could degrade the reconstruction, but the overall result is still good, showing that the method is fairly robust. Extracting the neutral hydrogen (HI) signal is a great challenge for cosmological 21 cm experiments; both the astrophysical foregrounds and receiver noise are typically several orders of magnitude greater than the 21 cm signal. However, the different properties of the 21 cm signal, foreground and noise can be exploited to separate these components. The foregrounds are generally smooth or correlated over the frequency space along a line of sight (LOS), while both the 21 cm signal and noise vary stochastically along the same LoS. The foreground can be removed by filtering out the smooth component in frequency space. The receiver noise is basically uncorrelated for observations at different times, hence for surveys it is also uncorrelated in different directions, while the 21 cm signal, which traces the large scale structure, is correlated up to certain scales. In this exercise, we apply Wiener filters in frequency and angular space to extract the 21 cm signals. We found that the method works well. Inaccurate knowl- edge about the beam could degrade the reconstruction, but the overall result is still good, showing that the method is fairly robust.
出处 《Research in Astronomy and Astrophysics》 SCIE CAS CSCD 2018年第9期101-112,共12页 天文和天体物理学研究(英文版)
基金 supported by the Ministry of Science and Technology(2016YFE0100300) the National Natural Science Foundation of China(Grant Nos.11473044,U1501501,U1631118 and 11633004) the Chinese Academy of Sciences(QYZDJ-SSW-SLH017) support by the CSC Cai Yuanpei grant
关键词 methods: data analysis - (cosmology:) dark ages REIONIZATION first stars - cosmology:observations methods: data analysis - (cosmology:) dark ages reionization first stars - cosmology:observations
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部