期刊文献+

基于自适应粒子群算法的玻璃澄清环境评价模型分析

Quantitative Evaluation of Clarification Environment of Glass Melting Process Based on Adaptive Particle Swarm Optimization
下载PDF
导出
摘要 玻璃熔制过程是玻璃生产中的高耗能单元,其过程涉及的变量复杂,在实际生产中常因难以合理调节生产参数而造成生产环境不稳定进而导致产品质量缺陷。为了评估澄清环境,基于前人对玻璃液流规律的研究,对气泡逸出难易程度和澄清时间进行定量化分析,建立澄清环境评估模型,并采用自适应变异粒子群算法对模型求解,将优化后的参数应用于实际生产调试,得到非常满意的结果,从而验证模型的正确性。 In the process of glass production, Glass melting is a high energy consumption unit. Because of the many variables involved in the process, it is difficult to adjust the production parameters reasonably in the actual production, which cause the instability of the production environment and lead to the instability of the product quality. In order to evaluate the clarified production environment, the flow rule of glass flow was analyzed. And based on the quantitative calculation of bubble rise time and clarification time, a clarification condition evaluation model was established, and adaptive mutation particle swarm optimization algorithm was applied to solve the model. The optimized parameters were run in the actual production debugging, and a very satisfactory result was obtained, which verified the correctness of the model.
作者 姜梦一 JIANG Meng-yi(College of Mechanical and Electronic Engineering,Guangdong University of Technology,Guangzhou 510006,China)
出处 《机电工程技术》 2018年第9期5-8,共4页 Mechanical & Electrical Engineering Technology
基金 国家自然科学基金联合基金重点项目(编号:U1501248) 国家自然科学基金面上项目(编号:51475096)
关键词 玻璃熔制 澄清过程 自适应粒子群算法 评价模型 glass melting clarification process adaptive particle swarm optimization (PSO) evaluation model
  • 相关文献

参考文献2

二级参考文献7

共引文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部