期刊文献+

基于时间序列和聚类的挤压机能耗异常检测研究 被引量:5

Study on Abnormal Energy Consumption Detection of Extruder Based on Time Series and Clustering
下载PDF
导出
摘要 挤压机能耗数据异常分为点异常和模式异常,传统的异常检测方法往往只能检测出其中一种。基于此,使用一种基于时间序列和聚类的能耗异常检测方法。针对点异常,提出一种基于K-Means和LOF的算法(K-MLS);而对于模式异常,设计K-异常因子(K-MLOF)检测算法。为验证方法的有效性,利用某铝型材企业能耗数据对其进行验证和对比分析,结果表明该方法具有较高的精度。 The abnormal energy consumption data of extruder can be divided into point anomaly and pattern anomaly, and the traditional anomaly detection method can only detect one of them. Therefore, this paper uses a method based on time series and clustering to detect abnormal energy consumption. Aiming at the point anomaly, an algorithm based on K-MeanS and LOF was proposed(K-MLS). For pattern anomaly, a K-nearest neighbor anomaly factor detection algorithm (K-MLOF)was designed. In order to verify the validity of the method, the energy consumption data of an aluminum profile enterprise were used to verify and compare the results. The results show that the method has higher accuracy.
作者 曾利云 肖云 张植豪 ZENG Li-yun;XIAO Yun;ZHANG Zhi-hao(GuangdongUniversityofTechnology,School of Mechatronic Engineering,Guangzhou510006,China)
出处 《机电工程技术》 2018年第9期32-36,共5页 Mechanical & Electrical Engineering Technology
关键词 点异常 模式异常 异常检测 时间序列 聚类 point anomaly pattern anomaly anomaly detection time series clustering
  • 相关文献

参考文献2

二级参考文献27

  • 1汪雪飞,杨建明.PG6551B燃机排气分散度大故障的分析与处理[J].燃气轮机技术,2004,17(2):58-61. 被引量:4
  • 2文琪,彭宏.小波变换的离群时序数据挖掘分析[J].电子科技大学学报,2005,34(4):556-558. 被引量:7
  • 3翁小清,沈钧毅.基于滑动窗口的多变量时间序列异常数据的挖掘[J].计算机工程,2007,33(12):102-104. 被引量:16
  • 4Zhang Y,Meratnia N, Havinga P. Outlier detectiontechniques for wireless sensor networks: A survey [J]. IEEECommunications Surveys & Tutorials ,2010,12( 2) : 159 -170.
  • 5Lee J-G,Han J W,Li X L.Trajectory outlier detection:Apartition-and-detect framework[ C ] //IEEE 24th Interna-tional Conference on Data Engineering, 2008 : 140-149.
  • 6Yang K, Shahabi C. A PCA-based similarity measure formultivariate time series[C] //Proceedings of the SecondACM International Workshop on Multimedia Databases,2004:65-74.
  • 7Agyemang M.LSC-Mine: Algorithm for mining local out-liers [C ] // Khosrow-Pour M. Innovations Through Infor-mation Technology, 2004,doi : 10. 4018/978-1-59140-261-9.ch002.
  • 8Kramer J, Seeger B. Semantics and implementation ofcontinuous sliding window queries over data streamsf J].ACM Transactions on Database Systems,2009,34 ( 1):19-26.
  • 9LEE Y K, MAVRIS D N, VOLOVOI V V, et al. A fault di- agnosis method for industrial gas turbines using Bayesian data analysis [ J 1. Journal of Engineering for Gas Turbines and Power, 2010, 132(4): 041602.
  • 10LI Y G. Performance analysis based gas turbine diagnostics: a review [ J ]. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 2002, 216 (5) : 363-377.

共引文献17

同被引文献31

引证文献5

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部