期刊文献+

Analysis of transcriptome sequencing of sciatic nerves in Sprague-Dawley rats of different ages 被引量:1

Analysis of transcriptome sequencing of sciatic nerves in Sprague-Dawley rats of different ages
下载PDF
导出
摘要 An aging-induced decrease in Schwann cell viability can affect regeneration following peripheral nerve injury in mammals. It is therefore necessary to investigate possible age-related changes in gene expression that may affect the biological function of peripheral nerves. Ten 1-week-old and ten 12-month-old healthy male Sprague-Dawley rats were divided into young(1 week old) and adult(12 months old) groups according to their ages. mRNA expression in the sciatic nerve was compared between young and adult rats using next-generation sequencing(NGS) and bioinformatics(n = 4/group). The 18 groups of differentially expressed mRNA(DEmRNAs) were also tested by quantitative reverse transcription polymerase chain reaction(n = 6/group). Results revealed that(1) compared with young rats, adult rats had 3608 groups of DEmRNAs. Of these, 2684 were groups of upregulated genes, and 924 were groups of downregulated genes. Their functions mainly involved cell viability, proliferation, differentiation, regeneration, and myelination.(2) The gene with the most obvious increase of all DEmRNAs in adult rats was Thrsp(log2 FC = 9.01, P 〈 0.05), and the gene with the most obvious reduction was Col2 a1(log2 FC = -8.89, P 〈 0.05).(3) Gene Ontology analysis showed that DEmRNAs were mainly concentrated in oligosaccharide binding, nucleotide-binding oligomerization domain containing one signaling pathway, and peptide-transporting ATPase activity.(4) Analysis using the Kyoto Encyclopedia of Genes and Genomes showed that, with increased age, DEmRNAs were mainly enriched in steroid biosynthesis, Staphylococcus aureus infection, and graft-versus-host disease.(5) Spearman's correlation coefficient method for evaluating NGS accuracy showed that the NGS results and quantitative reverse transcription polymerase chain reaction results were positively correlated(rs = 0.74, P 〈 0.05). These findings confirm a difference in sciatic nerve gene expression between adult and young rats, suggesting that, in peripheral nerves, cells and the microenvironment change with age, thus influencing the function and repair of peripheral nerves. An aging-induced decrease in Schwann cell viability can affect regeneration following peripheral nerve injury in mammals. It is therefore necessary to investigate possible age-related changes in gene expression that may affect the biological function of peripheral nerves. Ten 1-week-old and ten 12-month-old healthy male Sprague-Dawley rats were divided into young(1 week old) and adult(12 months old) groups according to their ages. mRNA expression in the sciatic nerve was compared between young and adult rats using next-generation sequencing(NGS) and bioinformatics(n = 4/group). The 18 groups of differentially expressed mRNA(DEmRNAs) were also tested by quantitative reverse transcription polymerase chain reaction(n = 6/group). Results revealed that(1) compared with young rats, adult rats had 3608 groups of DEmRNAs. Of these, 2684 were groups of upregulated genes, and 924 were groups of downregulated genes. Their functions mainly involved cell viability, proliferation, differentiation, regeneration, and myelination.(2) The gene with the most obvious increase of all DEmRNAs in adult rats was Thrsp(log2 FC = 9.01, P 〈 0.05), and the gene with the most obvious reduction was Col2 a1(log2 FC = -8.89, P 〈 0.05).(3) Gene Ontology analysis showed that DEmRNAs were mainly concentrated in oligosaccharide binding, nucleotide-binding oligomerization domain containing one signaling pathway, and peptide-transporting ATPase activity.(4) Analysis using the Kyoto Encyclopedia of Genes and Genomes showed that, with increased age, DEmRNAs were mainly enriched in steroid biosynthesis, Staphylococcus aureus infection, and graft-versus-host disease.(5) Spearman's correlation coefficient method for evaluating NGS accuracy showed that the NGS results and quantitative reverse transcription polymerase chain reaction results were positively correlated(rs = 0.74, P 〈 0.05). These findings confirm a difference in sciatic nerve gene expression between adult and young rats, suggesting that, in peripheral nerves, cells and the microenvironment change with age, thus influencing the function and repair of peripheral nerves.
出处 《Neural Regeneration Research》 SCIE CAS CSCD 2018年第12期2182-2190,共9页 中国神经再生研究(英文版)
基金 supported by the National Natural Science Foundation of China,No.81201546(to YXL) the Doctoral Start-up Program of Natural Science Foundation of Guangdong Province of China,No.2017A030310302(to ZWZ) the Medical Scientific Research Foundation of Guangdong Province of China,No.A2016018(to BH) the Science and Technology Project of Guangdong Province of China,No.2016A010103012(to JHL)
关键词 peripheral nerve injury AGING Sprague-Dawley rat TRANSCRIPTOME SEQUENCING MRNA rat age Schwann cells neural regeneration peripheral nerve injury aging Sprague-Dawley rat transcriptome sequencing mRNA rat age Schwann cells neural regeneration
  • 相关文献

同被引文献3

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部