期刊文献+

多种数据模型在手足口病发病预测的应用探讨 被引量:9

Application of various data models in predicting the incidence of hand,foot and mouth disease
原文传递
导出
摘要 目的应用多种数学模型拟合出手足口病发病最优模型,预测手足口病发病趋势,为疾病防控提供科学依据。方法采用SPSS 18. 0软件建立差分自回归移动平均模型(autoregressive integrated moving average,ARIMA模型)、差分自回归移动平均模型与多层感知神经网络组合模型(autoregressive integrated moving average and multilayer perceptron,ARIMA-MLP模型)和差分自回归移动平均模型与径向基函数神经网络组合模型(autoregressive integrated moving average and radial basis function,ARIMA-RBF模型),分别对手足口病发病情况进行拟合,通过对三种模型比较,找到预测最优模型。结果 ARIMA模型的拟合度R2和平均绝对误差MAE值分别为0. 725、2. 672,ARIMA-MLP模型为0. 724、2. 672,ARIMA-RBF模型为0. 801、2. 206。结论 ARIMA-RBF模型的拟合度最大、平均绝对误差最小模型,拟合效果优于其他两种模型。 Objective To predict the incidence trend of hand,foot and mouth disease( HFMD) through an optimal prediction model of HFMD incidence fitted by various mathematical models,and to provide a scientific basis for HFMD prevention and control. Methods SPSS18.0 software was employed to establish ARIMA,ARIMA-MLP and ARIMA-RBF models,and then the models were respectively used to fit the incidence of HFMD. The optimal prediction model was found out by comparing the three models. Results The goodness of fit R2 and MAE( mean absolute error) values of ARIMA,ARIMA-MLP and ARIMA-RBF models were 0.725 and 2.672,0.724 and 2.672,0.801 and 2.206 respectively. Conclusions ARIMA-RBF model has maximum R2 and minimum MAE,and its fitting efficiency is superior to those of two other models.
作者 原凌云 周以军 朱妮 焦欢 杨敏 张永英 王娟 YUAN Ling-yun , ZHOU Yi-jun, ZHU Ni, JIAO Huan, YANG Min, ZHANG Yong-ying, WANG Juan(Ankang Municipal Center for Disease Control and Prevention, Ankang, Shaanxi 725000, China)
出处 《实用预防医学》 CAS 2018年第11期1400-1402,共3页 Practical Preventive Medicine
关键词 手足口病 ARIMA模型 ARIMA-RBF模型 ARIMA-MLP模型 发病预测 hand, foot and mouth disease ARIMA model ARIMA-RBF model ARIMA-MLP model forecasting
  • 相关文献

参考文献3

二级参考文献67

  • 1崔景安,叶萌,宋国华,张艳.北京市手足口病的流行趋势预测[J].生物数学学报,2014,29(1):131-135. 被引量:5
  • 2董选军,余运贤,叶晓军,朱列波.义乌市2009-2011年手足口病时空扫描统计分析[J].中国公共卫生管理,2013,29(3):357-358. 被引量:4
  • 3Wangdi K, Singhasivanon P, Silawan T, et al. Development of temporal modelling for forecasting and prediction of malaria in- fections using time series and ARIMAX analyses: A case study in endemic districts of Bhutan[J]. Malar J, 2010,9 : 251.
  • 4孙振球,徐勇勇.医学统计学[M].北京:人民卫生出版社,2013:20-25.
  • 5国家卫生计生委疾病预防控制局.全国法定传染病疫情情况[EB/OL]http://www,nhfpc,gov.cn/jkj/pgzdt/list-2,shtml.
  • 6Angulo J,Yu HL,Langousis A,et al.Spatiotemporal infectious disease modeling: A BME-SIR approach[J].Plos one,2013,8(9): e72168.
  • 7Chuo F,Tiing FCS,Labadin J,et al.A simple deterministic model for the spread of hand,foot and mouth disease (HFMD) in Sarawak[J].IEEE,2008:947- 952.
  • 8Sham NM,Krishnarajah I,Shitan M,et al.Time series modelon hand,foot and mouth disease in Sarawak,Malaysia.Asian Pacific Journal of Tropical Disease.2014(4): 469-472.
  • 9Samphutthanon R,Tripathi NK,Ninsawat S,et al.Spatio-temporal distribution and hotspots of hand,foot and mouth disease(HFMD) in Northern Thailand[J].International journal of environmental research and public health,2013,11(1): 312-336.
  • 10Liu Y,Wang X,Liu Y,et al.Detecting Spatial-Temporal Clusters of HFMD from 2007 to 2011 in Shandong Province,China.e63447.PLoS ONE.2013;8.

共引文献30

同被引文献94

引证文献9

二级引证文献37

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部