期刊文献+

Bingham流体在双重多孔介质中径向渗流的分形模型

Fractal Analysis of Radial Seepage for Bingham Fluids in Dual-porosity Media
下载PDF
导出
摘要 利用分形理论提出了Bingham流体在双孔隙率双重多孔介质中径向渗流的分形模型,得到了Bingham流体在双重多孔介质中启动压力梯度梯度及渗透率的分形解析表达式,它们可以表示成多孔介质的微结构参数和类树状分形分叉网络的结构参数、井筒半径及屈服应力的函数。研究结果表明Bingham流体在双孔隙率双重介质中的启动压力梯度随基质孔隙率及渗透率的增大而减小,随井筒半径的增加而增大。该理论模型与已有的理论解析结果吻合较好,证实了本模型的有效性。 Fractal analyzing expressions of Bingham fluid' s starting pressure gradient and permeability in radial composite dual-porosity medium are developed with the help of fractal models showing the radial flow behavior for Bingham fluids in and those expressions can be shown as the micro-structural parameters of porous media, structural parameters of the fractal-like tree networks, the well bore radius and the yield stress are presented. The results reveal that the starting pressure gradient for Bingham fluids in radial composite dual-porosity media decreases with the increase of porosity of matrix material and permeability, and increases with the increase of the radial distance. A good agreement obtained between the available theoretical analyzing results and our theoretical model verified the rationality of the present fraetal model.
作者 王世芳 吴涛 曹秀英 WANG Shi-fang;WU Tao;CAO Xiu-ying(School of Physics,Mechanical & Electrical Engineering,Hubei University of Education,Wuhan 430205,China;School of Science,Wuhan Institute of Technology,Wuhan 430205,China)
出处 《湖北第二师范学院学报》 2018年第8期9-14,共6页 Journal of Hubei University of Education
基金 国家自然科学基金项目(11402081)
关键词 双孔隙率多孔介质 Bingham流体 启动压力梯度 分形理论 dual-porosity porous media Bingham fluids starting pressure gradient fractal theory
  • 相关文献

参考文献1

二级参考文献10

  • 1Zheng C, Gorelick S M. Analysis of solute transport-in flow fields influenced by preferential f~owpaths at the decimeter scale[J]. Ground Water, 2003, 41(2): 142-155.
  • 2Ronayen M J, Gorelick S M. Effective permeability of porous media containing branching channel net- works[J]. Physical Review: E, 2006, 73 (2): 026305.
  • 3Katz A J, Thompson A H. Fractal sandstone pores: implications for conductivity and pore formation[J]. Physical Review Letters, 1985, 54(12): 1325-1328.
  • 4Sahimi M. Flow and transport in porous media and fractured rocks[M]. Weinheim: VCH, 1995.
  • 5Adler P M, Thovert J F. Real porous media: local geometry and macroscopic properties [J]. Applied Mechanics Reviews, 1998, 51(9): 537-585.
  • 6Xu P, Yu B M. Developing a new form of permeabili- ty and Kozeny-Carman constant for homogeneous porous media by means of fractal geometry[J]. Ad- vances in Water Resources, 2008, 31(1): 74-81.
  • 7Yu B M. Analysis of flow in fractal porous media[J]. Applied Mechanics Reviews, 2008, 61(5) : 050801.
  • 8Bear J. Dynamics of fluids in porous media[M]. New York: Elsevier, 1972.
  • 9Pitchumani R, Ramakrishnan B. A fractal geometry model for evaluating permeabilities of porous pre- forms used in liquid composite molding[J]. Interna- tional Journal of Heat and Mass Transfer, 1999, 42(2):2219-2232.
  • 10Chang J, Yortsos Y C. Pressure-transient analysis of fractal reservoirs[J]. SPE Formation Evaluation, 1990, 5(1): 31-38.

共引文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部