期刊文献+

Fluorination vs. chlorination: a case study on high performance organic photovoltaic materials 被引量:12

Fluorination vs. chlorination: a case study on high performance organic photovoltaic materials
原文传递
导出
摘要 Halogenation is a very efficient chemical modification method to tune the molecular energy levels, absorption spectra and molecular packing of organic semiconductors. Recently, in the field of organic solar cells(OSCs), both fluorine-and chlorinesubstituted photovoltaic materials, including donors and acceptors, demonstrated their great potentials in achieving high power conversion efficiencies(PCEs), raising a question that how to make a decision between fluorination and chlorination when designing materials. Herein, we systemically studied the impact of fluorination and chlorination on the properties of resulting donors(PBDB-T-2 F and PBDB-T-2 Cl) and acceptors(IT-4 F and IT-4 Cl). The results suggest that all the OSCs based on different donor and acceptor combinations can deliver good PCEs around 13%–14%. Chlorination is more effective than fluorination in downshifting the molecular energy levels and broadening the absorption spectra. The influence of chlorination and fluorination on the crystallinity of the resulting materials is dependent on their introduction positions. As chlorination has the advantage of easy synthesis, it is more attractive in designing low-cost photovoltaic materials and therefore may have more potential in largescale applications. Halogenation is a very efficient chemical modification method to tune the molecular energy levels, absorption spectra and molecular packing of organic semiconductors. Recently, in the field of organic solar cells(OSCs), both fluorine-and chlorinesubstituted photovoltaic materials, including donors and acceptors, demonstrated their great potentials in achieving high power conversion efficiencies(PCEs), raising a question that how to make a decision between fluorination and chlorination when designing materials. Herein, we systemically studied the impact of fluorination and chlorination on the properties of resulting donors(PBDB-T-2 F and PBDB-T-2 Cl) and acceptors(IT-4 F and IT-4 Cl). The results suggest that all the OSCs based on different donor and acceptor combinations can deliver good PCEs around 13%–14%. Chlorination is more effective than fluorination in downshifting the molecular energy levels and broadening the absorption spectra. The influence of chlorination and fluorination on the crystallinity of the resulting materials is dependent on their introduction positions. As chlorination has the advantage of easy synthesis, it is more attractive in designing low-cost photovoltaic materials and therefore may have more potential in largescale applications.
出处 《Science China Chemistry》 SCIE EI CAS CSCD 2018年第10期1328-1337,共10页 中国科学(化学英文版)
基金 supported by the National Natural Science Foundation of China (91333204, 91633301, 51673201) the Ministry of Science and Technology of China (2014CB643501) the Chinese Academy of Sciences (XDB12030200, KJZD-EW-J01)
关键词 氟化作用 氯化 材料 光电 器官 案例 太阳能电池 修正方法 organic solar cells bandgap engineering fluorination chlorination
  • 相关文献

同被引文献34

引证文献12

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部