期刊文献+

On De Giorgi's conjecture: Recent progress and open problems 被引量:1

On De Giorgi's conjecture: Recent progress and open problems
原文传递
导出
摘要 In 1979,De Giorgi conjectured that the only bounded monotone solutions to the Allen-Cahn equation △u+u-u^3=0 in R^N,are one-dimensional.This conjecture and its connection with minimal surfaces and Toda systems are the subject of this survey article. In 1979,De Giorgi conjectured that the only bounded monotone solutions to the Allen-Cahn equation △u+u-u-3=0 in R-N,are one-dimensional.This conjecture and its connection with minimal surfaces and Toda systems are the subject of this survey article.
出处 《Science China Mathematics》 SCIE CSCD 2018年第11期1925-1946,共22页 中国科学:数学(英文版)
基金 partially supported by Natural Sciences and Engineering Research Council of Canada
关键词 De Giorgi's conjecture classification of solutions Allen-Cahn equation minimal surfaces Toda systems 极小曲面 数学 理论研究 计算方法
  • 相关文献

同被引文献11

引证文献1

  • 1Daomin Cao,Xiao-Shan Gao,Feimin Huang.Preface[J].Science China Mathematics,2018,61(11):1923-1924.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部