期刊文献+

对膜簧片型汽笛频率影响因素的研究 被引量:1

INFLUENCE FACTORS TO FREQUENCY OF BALLOONWHISTLE BASED ON MEMBRANE REEDS
下载PDF
导出
摘要 本文对汽笛频率影响因素进行了理论与实验探究,在汽笛薄膜振动动力学方程中引入了附加质量的概念,并建立了薄膜振动模型。根据该模型研究了薄膜面密度,管子的长度与半径,容器的半径和进气质量流速对汽笛发声频率的影响;通过声音在管道内传播的波动方程给出了管内空气柱振动模型。实验研究结果表明,对声音信号基频的主要影响因素包括薄膜参数和管子参数。当薄膜张力增大时,声音信号的基频增大;但是当薄膜半径和薄膜面密度增大时,声音信号的基频却减小。当进气速率增大时,声音信号的基频增大;但是,当管子的长度和半径增大时,声音信号的基频却减小。截止目前,该项研究在国内外鲜见研究报道。 The factors to influence the frequency of the balloon whistle were studied theoretically and experimentally.The additional mass was considered in the dynamic vibration equation,and the film vibration model was presented.The influences of the film density,the length and radius of the tube,the radius of the container,and the inlet air mass spend to the frequency of the balloon whistle were studied based on the film vibration model.The air column vibration model was derived from the wave equation of sound propagation in the tube.The experimental results showed that the main influence factors to the base frequency are the film and tube parameters.The base frequency increased with the film tension increasing,but decreased with the film radius and surface density increasing.The base frequency increased with the inlet air mass speed increasing,but decreased with the tube length and radius increasing.The similar studies were less reported worldwide till now.
作者 冯舰锐 陈聪 吴秀文 董爱国 FENG Jianrui;CHEN Cong;WU Xiuwen;DONG Aiguo(China University of Geoscienees,Beijing 100083)
出处 《物理与工程》 2018年第5期72-77,共6页 Physics and Engineering
基金 中国地质大学(北京)教学研究与教学改革项目(编号:JGYB201528) 中国地质大学(北京)2017年大学生创新创业训练计划项目(2017B71) 北京高等学校教育教学改革立项项目(编号:2014-ms132)
关键词 气球汽笛 发声原理 薄膜 空气柱 balloon whistle sounding mechanism film column of air
  • 相关文献

参考文献4

二级参考文献10

  • 1Maheri M R, Severn R T. Experimental added-mass in modal vibration of cylindrical structures[J]. Engineering Structures, 1992,14(3) : 163-175.
  • 2Irwin H P A H, Wardlaw R L. A wind tunnel investigation of a retractable fabric roof for the Montreal Olympic stadium[A]. Cermak J E. Proceedings of the 5th International Conference[C]. Colorado, USA, 1979:925-938.
  • 3Minami H. Added mass of a membrane vibrating at finite amplitude[J].Journal of Fluids and Structures, 1998,12:919-932.
  • 4Yadykin Y, Tenetov V, Levin D. The added mass of a flexible plate oscillating in a fluid[J]. Journal of Fluids and Structures, 2003,17 :115-123.
  • 5Dugundji J, Dowell E, Perkin B. Subsonic flutter of panels on continuous elastic foundations[J]. Journal of American Institute of Aeronautics and Astronautics, 1963,1:1 146-1 154.
  • 6Wu T Y. Hydromechanics of swimming propulsion, Part 3. Swimming and optimum movements of slender fish with side fins[J].Journal of Fluid Mechanics, 1971,46:545-568.
  • 7Brincker R, Zhang L, Andersen P. Modal identification of output-only systems using frequency domain decomposition [A]. Proceedings of the European COST F3 Conference on System Identification and Structural Health Monitoring [C]. Madrid, Spain, 2000~273-282.
  • 8Sewall J L, Miserentino R, Pappa R S. Vibrating studies of a lightweight three-sided membrane suitable for space application [R]. NASA Technical Paper, 1983:2095.
  • 9周光垌 严宗毅 等.流体力学[M].北京:高等教育出版社,2000.234-237.
  • 10粱昆淼.数学物理方法[M]人民教育出版社,1979.

共引文献26

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部