期刊文献+

修理设备和开关不完全可靠的温贮备可修系统的可靠性 被引量:4

Reliability for Warm Standby Repairable System with Unreliable Server and Switching Failure
下载PDF
导出
摘要 最近,KUO和KE[Reliability Engineering and System Safety. 2016,145:74-82,参考文献[11]在假定部件故障后的修理时间以及修理设备故障后的修理时间均为一般分布的情形下,运用补充变量技术分别推导出三种可修系统模型的稳态可用度。然而作者并没有研究系统的瞬时可用度,本文在文献[11]的基础上,运用补充变量法推导出文献[11]中模型一的瞬时可用度的表达式。最后,用一个数值算例对所得结果进行了模拟实现。 Recently, KUO and KE [Reliability Engineering and System Safety. 2016, 145 : 74-82, see reference [11] assume that the repair time of the failure component and that of the failure server are general distribution, and the steady state availability of the three repairable systems are obtained by using supplementary variable method respectively. However, the instantaneous availability is not investigated in reference[11]. In this paper, the instantaneous availability of the model 1 is obtained by using supplementary variable method. Finally, a numerical examole is given to illustrate, these results obtained in the paper.
作者 刘宝亮 温艳清 丰月姣 LIU Bao-liang;WEN Yan-qing;FENG Yue-jiao(College of Mathematics and Computer Science,Shanxi Datong University,Datong 037009,China)
出处 《运筹与管理》 CSSCI CSCD 北大核心 2018年第10期113-117,共5页 Operations Research and Management Science
基金 国家自然科学基金项目(71601101) 山西大同大学博士科研启动基金项目(2015-B-06)
关键词 可修系统 可用度 补充变量法 LAPLACE变换 reliability availability supplementary variable Laplace transform
  • 相关文献

参考文献2

二级参考文献20

  • 1COLQUHOUN D HAWKS A G. On the stochastic properties of bursts of single ion channel opening and of clusters of bursts [ J l. Philosophical Transactions of the Royal Society of London: Series B, Biological Sciences, 1982, 300:1-59.
  • 2CUI Lirong, LI Haijun, LI Jinlin. Markov repairable systems with history dependent up and down states [ J ]. Stochastic Mod- els, 2007, 23(4):665-681.
  • 3WANG Liying, CUI Lirong. Aggregated semi-Markov repairable systems with history dependent up and down states [ J]. Mathematical and Computer Modeling, 2011, 53 (5) :883-895.
  • 4ZHENG Zhihua, CUI Lirong, HAWKS A G. A study on a single-unit Markov repairable system with repair time omission [ J ]. IEEE Transactions on Reliability, 2006, 55 (2) : 182-188.
  • 5BAO Xinzhuo, CUI Lirong. An analysis of availability for series Markov repairable system with neglected or delayed failures [ J]. IEEE Transactions on Reliability, 2010, 59(4) :734-742.
  • 6NEUTS M F. Matrix-geometric solution in stochastic models-an algorithmic approach[ M]. Baltimore: Johns Hopkins Univer- sity Press, 1981.
  • 7MONTORO-CAZORLA D, PEREZ-OCON R. A maintenance model with failures and inspection following Markovian arrival processes and two repair modes[ J]. European Journal of Operational Research, 2008, 186(2) :694-707.
  • 8MONTORO-CAZORLA D, PEREZ-OCON R. Reliability of a system under two types of failures using a Markovian arrival process[ J]. Operations Research Letters, 2006, 34(5) :525-530.
  • 9PEREZ-OCON R, MONTORO-CAZORLA D. A multiple warm standby system with operation and repair times following phase-type distributions [ J]. European Journal of Operational Research, 2006, 169 (1) :178-188.
  • 10MONTORO-CAZORLA D, PEREZ-OCON R. A deteriorating two-system with two repair modes and sojourn times phase- type distributed [ J]. Reliability Engineering and System Safety, 2006, 91 (1) :1-9.

共引文献2

同被引文献18

引证文献4

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部