期刊文献+

ZnCl_2活化玉米秸秆炭化物的制备及其储锂性能研究 被引量:1

Preparation of Corn Straw Carbide by Activation with ZnCl_2 and Its Lithium-storage Performance
下载PDF
导出
摘要 以玉米秸秆为原料,经高温煅烧制备了玉米秸秆炭化物(C1)和ZnCl_2活化玉米秸秆炭化物(C2)。利用扫描电子显微镜(SEM)、N2等温吸-脱附测试和恒电流充放电对材料进行结构、电化学性能分析。结果表明:C2具有较大的比表面积(425.06 m2·g^(-1))和丰富的孔道结构;电流密度为100 mA·g^(-1)时,C1和C2的首次放电和充电比容量分别为540.2 mAh·g^(-1),277.2 mAh·g^(-1)和1 156.0 mAh·g^(-1),517.6 mAh·g^(-1); 600 mA·g^(-1)电流密度下循环300次后,C2的放电比容量可保持在379.8 mAh·g^(-1),C2具有较高的可逆比容量和良好的循环稳定性。 The corn straw carbides( C1, C2 ) were prepared by high temperature calcination and activation with ZnCl 2 , using corn straw as a raw material. The structure and electrochemical properties were characterized by scanning electron microscopy(SEM), nitrogen adsorption/desorption and constant current charge/discharge method. The results showed that C2 has porous flaky structure owning a high surface area of 425.06 m 2 ·g -1 . At a current density of 100 mA·g -1 , the initial discharge and charge capacities of C1 are 540.2 mAh·g -1 and 277.2 mAh·g -1 , respectively, and those for C2 are 1 156.0 mAh·g -1 and 517.6 mAh·g -1 . After 300 cycles, C2 can maintain the discharge capacity of 379.8 mAh·g -1 at the current density of 600 mA·g -1 . C2 possesses higher reversible capacities and better cycling stability.
作者 张庆堂 孟艳 马啸啸 ZHANG Qing-tang;MENG Yan;MA Xiao-xiao(School of Petrochemical Engineering,Lanzhou University of Technology,Lanzhou 710025,China)
出处 《合成化学》 CAS CSCD 北大核心 2018年第11期845-849,共5页 Chinese Journal of Synthetic Chemistry
基金 甘肃省自然科学基金资助项目(1606RJZA180)
关键词 玉米秸秆 ZNCL2 活化 制备 负极 储锂性能 corn straw ZnCl 2 activation preparation anode lithium storage performance
  • 相关文献

参考文献6

二级参考文献31

  • 1王国平,张庆堂,瞿美臻,于作龙.纳米级碳导电剂的种类对LiCoO_2电化学性能的影响[J].应用化学,2006,23(12):1385-1390. 被引量:29
  • 2Jin B,Jin E M,Park K H,et al.Electrochemical properties of LiFePO4-multiwalled carbon nanotubes composite cathode materials for lithium polymer battery[J].Electrochem Commun,2008,10:1537-1540.
  • 3Sheem K,Lee Y H,Lim H S.High-density positive electrodes containing carbon nanotubes for use in Li-ion cells[J].J Power Sources,2006,158:1425-1430.
  • 4Whittingham M S.Lithium batteries and cathode materials[J].Chem Rev,2004,104:4271-4301.
  • 5Robert D,Miran G,Jernej D,et al.The role of carbon black distribution in cathodes for Li ion batteries[J].J Power Sources,2003,119-121:770-773.
  • 6Indrajeet V T,Vipul M,John N H,et al.Performance of carbon-fiber-containing LiFePO4 cathodes for high-power applications[J].J Power Sources,2006,162:673-678.
  • 7Wang G P,Zhang Q T,Yu Z L,et al.The effect of different kinds of nano-carbon conductive additives in lithium ion batteries on the resistance and electrochemical behavior of the LiCoO2 composite cathodes[J].Solid State Ionics,2008,179:263-268.
  • 8Li X L,Kang F Y,Shen W C.Multiwalled carbon nanotubes as a conducting additive in a LiNi0.7Co0.3O2 cathode for rechargeable lithium batteries[J].Carbon,2006,44:1334-1336.
  • 9Taraseort J M, Armand M. Issues and challenges fa- cing reehargeable lithium batteries [ J ]. Nature, 2001, 414:359 - 367.
  • 10Yoo E J, Kim J, Hosono E, et al. Large reversible Li storage of graphene nanosheet families for use in re- chargeable lithium ion batteries [ J ]. Nano Lett, 2008, 8(8 ) :2277 - 2282.

共引文献16

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部