期刊文献+

基于边界异类近邻关系构建的新特征提取方法 被引量:1

A New Feature Extraction Method Based on the Marginal Heterogeneous Neighbor Relationship Construction
下载PDF
导出
摘要 特征提取广泛应用于模式识别中。它去除原始样本的冗余信息,提取出有助于样本表示或分类的简洁有用的信息。线性鉴别分析(LDA)属于传统的监督特征提取方法,它旨在寻找最小化类内散度(方差)同时最大化类间散度(方差)的低维线性投影子空间。提出一种新的特征提取方法,旨在改进LDA,该方法在LDA的基础上,增加了每个类的中心点与该类边界异类样本的近邻关系,通过类中心对边界异类样本的排斥,扩大了类与类相互的边距,增强了类的可分性。YaleB人脸数据库和CENPARMI手写阿拉伯数字库中的实验结果,证明了新方法确实能够提高分类效果。 Feature extraction is widely used in pattern recognition.It eliminates redundant information from the original data samples so as to extract useful and concise information in favor of the sample representation or classification method.Linear discriminant analysis(LDA)is a traditional supervised feature extraction,which aims to find a low dimensional linear projection subspace that minimizes the scatter(variance)with the class meanwhile maximizes the scatter(variance)between classes.In this paper,a new feature extraction method is proposed,which aims to modify LDA.On the basis of LDA,the proposed method adds the neighborhood among the central point of each class and the marginal heterogeneous samples,to expand the mutual margin of classes,thus enhances the separabilities among classes.The experimental results on YaleB face database and CENPARMI handwritten numeral database show that the proposed method can improve the classification accuracies.
作者 陶玉婷 卓洋 张泽宇 周丹 TAO Yu ring;ZHUO Yang;ZHANG Ze yu;ZHOU Dan(Jinling Institute of Technology,Nanjing 211169,China;Nanjing Institute of Big Data,Nanjing 211169,China)
出处 《金陵科技学院学报》 2018年第3期6-10,共5页 Journal of Jinling Institute of Technology
基金 金陵科技学院博士科研启动基金(jit-b-201617) 智能人机交互科技创新团队(金陵科技学院科技创新团队10186001)
关键词 线性鉴别分析 特征提取 类中心 边界异类样本 分类 Linear Discriminant Analysis(LDA) feature extraction class center marginalheterogeneous samples classification
  • 相关文献

参考文献3

二级参考文献50

  • 1任靖,李春平.最小距离分类器的改进算法——加权最小距离分类器[J].计算机应用,2005,25(5):992-994. 被引量:30
  • 2HUM. Visual pattern recognition by moment invariant [J]. IRE Trans on Inf Theory, 1962, 8:179-187.
  • 3KHOTANZAD. A zernike moment based rotation invariant features for pattern recognition [J]. SPIE, 1988, 1002:212- 219.
  • 4SHEN D, HORACE H SIP. Discriminative wavelet shape descriptors for recognition of 2-D patterns [J]. Pattern Recognition, 1999,32(2) :151-165.
  • 5HARALICK R M, SHANMUGAM K, DINSTEIN I. Texture features for image classification [J]. IEEE Trans on System, Man and Cybernetics, 1973, 8(6):610-621.
  • 6TAMURA H, MORI S, YAMAWAKI T. Texture features corresponding to visual perception [J]. IEEE Trans on System, Man and Cybernetics, 1978,8(6):460-473.
  • 7ROSENFELD A, THURSTON M. Edge and curve detection for visual scene analysis [J]. IEEE Trans Computer, 1971, 20:512-519.
  • 8HONG Z Q. Algebraic feature extraction of image for recognition [J]. Pattern Recognition, 1991, 24(3) :211-219.
  • 9FREDRIC M HAM, ICICA KOSTANIC. Principles of neurocomputing for science and engineering [M], McGraw-Hill, 2003:396-407.
  • 10KIRBY M, SIROVICH L. Application of the Karhunen-Loeve procedure for the characterization of human faces [J]. IEEE Trans Pattern Anal Mach Intell, 1990, 12(1):103-108.

共引文献80

同被引文献6

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部