摘要
首先引入了对称广义强向量拟均衡问题的广义Levitin-Polyak适定性的概念以及集值映射的真拟凸性的概念.然后利用Kakutani-Fan-Glicksberg不动点定理,得到了对称广义强向量拟均衡问题解的存在性,并证明了对称广义强向量拟均衡问题是广义Levitin-Polyak适定的,最后举例说明了主要定理的条件是容易满足的.
The concept of generalized Levitin-Polyak well-posedness for symmetric generalized strong vector quasi-equilibrium problem and properly quasi-convexity for set-valued mappings are introduced.By means of Kakutani-Fan-Glicksberg's fixed point theorem,the existence of solutions to this problem is obtained.Meanwhile,the proof of symmetric generalized strong vector quasi-equilibrium problem is generalized Levitin-Polyak wellposedness is done.Finally,the examples to show the conditions required by the main theorem are easily found are given.
作者
刘敬华
段红娟
LIU Jinghua;DUAN Hongjuan(School of Mathematics and Statistics,Lingnan Normal University,Zhanjiang,Guangdong 524048,China;Department of Imformation Science,Zhanjiang Preschool Education College,Zhanjiang,Guangdong 524037,China)
出处
《内江师范学院学报》
2018年第10期28-34,共7页
Journal of Neijiang Normal University
基金
国家自然科学基金(11371314,11771197)
湛江幼儿师范专科学校青年项目(ZJYZQN201717,ZJYZQN201801)
岭南师范学院一般项目(ZL1505)