摘要
为了探究冻融作用下超高性能混凝土(UHPC)的抗冻性机理,利用纳米压痕技术对钢纤维-浆体以及细砂-浆体两种界面过渡区的微观结构和微观力学性能进行研究.研究表明:钢纤维-浆体界面过渡区中存在明显薄弱带,微观结构受冻融影响较大.冻融作用下水化硅酸钙、氢氧化钙的弹性模量和硬度相对变化幅度小于0.2.微孔洞体积分数随冻融循环次数增加呈指数增长,且孔径逐渐扩展到几十微米.钢纤维界面过渡区厚度经0~1500次冻融后从20μm逐渐扩展到65μm左右.随冻融循环次数增加,微孔洞体积分数呈指数函数增长,钢纤维界面过渡区厚度也逐渐扩展,因此可以用来有效地表征冻融作用下UHPC界面过渡区的微观力学性能劣化机理.
In order to explore frost resistance mechanism of ultra-high performance concrete(UHPC) under freeze-thaw(F-T) action, the microstructures and micromechanical properties of two interfacial transition zones(ITZ) of steel fiber-paste and fine sand-paste are investigated using nanoindentation technology. The experimental results demonstrates that there exits an obvious weak zone in the ITZ of fiber-paste, of which the microstructure is largely affected by F-T action. The relative variation of the amplitude of modulus and hardness of calcium silicate and calcium hydroxide is less than 0.2 under F-T action. The volume fraction of micropores increases exponentially as the increase of F-T cycles, and the pore size gradually extends to tens of microns. The thickness of ITZ between steel fibers and paste gradually increased from 20 to 65 μm after 0–1500 F-T cycles. Thus, the volume fraction of micropores and the thickness of ITZ in steel fibers can be used to effectively characterize the degradation of micromechanical properties of UHPC under cold climates.
作者
谢瑞峰
陆林军
乔丕忠
XIE RuiFeng;LU LinJun;QIAO PiZhong(School of Naval Architecture,Ocean and Civil Engineering,Shanghai Jiao Tong University,Shanghai 200240,China;State Key Laboratory of Ocean Engineering,Shanghai Jiao Tong University,Shanghai 200240,China)
出处
《中国科学:技术科学》
EI
CSCD
北大核心
2018年第10期1092-1102,共11页
Scientia Sinica(Technologica)
基金
国家自然科学基金(批准号:51478265和51679136)资助项目
关键词
纳米压痕试验
冻融作用
UHPC
退化
界面过渡区
微观结构
微观力学性能
nanoindentation experiment
freeze-thaw
UHPC
degradation
interfacial transition zone
microstructure
micromechanical properties