摘要
本文提出了一种基于人工表面等离激元的频率选择结构的设计方法:将设计的频率选择表面和金属鱼骨结构阵列相结合得到一种新的频率选择结构.文中采用这种方法设计了一种具有陡截止和高透、高抑制性能的双通带频率选择结构.该结构由金属鱼骨结构阵列和上下两层相同的频率选择表面复合而成.通过仿真可得,该结构的两个通带频率范围分别是3.0-4.1和10.5-10.9 GHz,透射率均在-0.5 dB以上.透射率低于-10 dB的频率范围是4.7-9.2和12.1-18 GHz.在12.4-15.5 GHz频率范围内,该结构的透射率甚至低于-20 dB.在通带内,电磁波可以高效地透过该结构;在阻带内,该结构对电磁波的透射具有较好的抑制作用.测试结果表明用这种方法设计出的频率选择结构的实际性能和仿真基本一致.在金属鱼骨结构空隙中填入轻质泡沫后该结构具有一定的力学承载性能,可以实现结构功能一体化的设计.
In this paper, a method of designing the frequency selective structure based on spoof surface plasmon polariton(SSPP) is proposed and demonstrated. According to the applications in different working bands, the designed frequency selective surface(FSS) and metallic fishbone structure array can be combined together to form a new frequency selective structure and satisfy the requirements for practical applications. Meanwhile, a dual-band-pass frequency selective structure with the property of steep cut-off frequency and high-efficiency transmission and inhibition is designed by using this method. The dual-band-pass frequency selective structure is composed of a metallic fishbone structure array and two identical FSSs. The metallic fishbone structure based on SSPP coupling can form a broadband high-efficiency transmission below the cut-off frequency of SSPP on the metallic fishbone structure. When a dual-band-pass FSS is loaded to this metallic fishbone structure array, a dual-band-pass frequency selective structure can be achieved. To improve the impedance matching of the dual-band-pass frequency selective structure, two identical FSSs are respectively loaded to the top and bottom sides of the metallic fishbone structure array. The simulated transmissivities of the dual-band-pass frequency selective structure exceed-0.5 dB in two frequency ranges: 3.0-4.1 GHz and 10.5-10.9 GHz. The simulated transmissivities are lower than-10 dB in other frequency ranges: 4.7-9.2 GHz and 12.1-18 GHz. The simulated transmissivities are even below-20 dB from 12.4 GHz to 15.5 GHz. The electromagnetic waves can be efficiently transmitted in the passband and restrained in the stopband. Then the dual-band-pass frequency selective structure is fabricated by using the printed circuit board technique and measured in the anechoic chamber. The measured results indicate that the real property of the dual-band-pass frequency selective structure is consistent with the simulated property and this method of designing the frequency selective structure is feasible. After filling the lightweight foam into the gap of the metallic fishbone structure, the mechanical loading property can be highly improved. Therefore, we can realize the design of combined structural and functional performance.
作者
王超
李勇峰
沈杨
丰茂昌
王甲富
马华
张介秋
屈绍波
Wang Chao;Li Yong-Feng;Shen Yang;Feng Mao-Chang;Wang Jia-Fu;Ma Hua;Zhang Jie-Qiu;Qu Shao-Bo(Department of Basic Sciences,Air Force Engineering University,Xi'an 710051,China)
出处
《物理学报》
SCIE
EI
CAS
CSCD
北大核心
2018年第20期334-341,共8页
Acta Physica Sinica
基金
国家自然科学基金(批准号:61331005
61471388
61501503)
陕西省自然科学基金(批准号:2017JM6005)资助的课题~~
关键词
人工表面等离激元
频率选择结构
双通带
集总电阻
spoof surface plasmon polariton
frequency selective structure
dual-band-pass
lumpedresistance