期刊文献+

Evolution of Tectonic Uplift, Hydrocarbon Migration, and Uranium Mineralization in the NW Junggar Basin: An Apatite Fission-Track Thermochronology Study 被引量:8

Evolution of Tectonic Uplift, Hydrocarbon Migration, and Uranium Mineralization in the NW Junggar Basin: An Apatite Fission-Track Thermochronology Study
下载PDF
导出
摘要 The Mesozoic–Cenozoic tectonic movement largely controls the northwest region of the Junggar Basin(NWJB), which is a significant area for the exploration of petroleum and sandstone-type uranium deposits in China. This work collected six samples from this sedimentary basin and surrounding mountains to conduct apatite fission track(AFT) dating, and utilized the dating results for thermochronological modeling to reconstruct the uplift history of the NWJB and its response to hydrocarbon migration and uranium mineralization. The results indicate that a single continuous uplift event has occurred since the Early Cretaceous, showing spatiotemporal variation in the uplift and exhumation patterns throughout the NWJB. Uplift and exhumation initiated in the northwest and then proceeded to the southeast, suggesting that the fault system induced a post spread-thrust nappe into the basin during the Late Yanshanian. Modeling results indicate that the NWJB mountains have undergone three distinct stages of rapid cooling: Early Cretaceous(ca. 140–115 Ma), Late Cretaceous(ca. 80–60 Ma), and Miocene–present(since ca. 20 Ma). These three stages regionally correspond to the LhasaEurasian collision during the Late Jurassic–Early Cretaceous(ca. 140–125 Ma), the Lhasa-Gandise collision during the Late Cretaceous(ca. 80–70 Ma), and a remote response to the India-Asian collision since ca. 55 Ma, respectively. These tectonic events also resulted in several regional unconformities between the J3/K1, K2/E, and E/N, and three large-scale hydrocarbon injection events in the Piedmont Thrust Belt(PTB). Particularly, the hydrocarbon charge event during the Early Cretaceous resulted in the initial inundation and protection of paleo-uranium ore bodies that were formed during the Middle–Late Jurassic. The uplift and denudation of the PTB was extremely slow from 40 Ma onward due to a slight influence from the Himalayan orogeny. However, the uplift of the PTB was faster after the Miocene, which led to re-uplift and exposure at the surface during the Quaternary, resulting in its oxidation and the formation of small uranium ore bodies. The Mesozoic–Cenozoic tectonic movement largely controls the northwest region of the Junggar Basin(NWJB), which is a significant area for the exploration of petroleum and sandstone-type uranium deposits in China. This work collected six samples from this sedimentary basin and surrounding mountains to conduct apatite fission track(AFT) dating, and utilized the dating results for thermochronological modeling to reconstruct the uplift history of the NWJB and its response to hydrocarbon migration and uranium mineralization. The results indicate that a single continuous uplift event has occurred since the Early Cretaceous, showing spatiotemporal variation in the uplift and exhumation patterns throughout the NWJB. Uplift and exhumation initiated in the northwest and then proceeded to the southeast, suggesting that the fault system induced a post spread-thrust nappe into the basin during the Late Yanshanian. Modeling results indicate that the NWJB mountains have undergone three distinct stages of rapid cooling: Early Cretaceous(ca. 140–115 Ma), Late Cretaceous(ca. 80–60 Ma), and Miocene–present(since ca. 20 Ma). These three stages regionally correspond to the LhasaEurasian collision during the Late Jurassic–Early Cretaceous(ca. 140–125 Ma), the Lhasa-Gandise collision during the Late Cretaceous(ca. 80–70 Ma), and a remote response to the India-Asian collision since ca. 55 Ma, respectively. These tectonic events also resulted in several regional unconformities between the J3/K1, K2/E, and E/N, and three large-scale hydrocarbon injection events in the Piedmont Thrust Belt(PTB). Particularly, the hydrocarbon charge event during the Early Cretaceous resulted in the initial inundation and protection of paleo-uranium ore bodies that were formed during the Middle–Late Jurassic. The uplift and denudation of the PTB was extremely slow from 40 Ma onward due to a slight influence from the Himalayan orogeny. However, the uplift of the PTB was faster after the Miocene, which led to re-uplift and exposure at the surface during the Quaternary, resulting in its oxidation and the formation of small uranium ore bodies.
出处 《Acta Geologica Sinica(English Edition)》 CAS CSCD 2018年第5期1901-1916,共16页 地质学报(英文版)
基金 jointly conjugal supported by the Nuclear energy development project(grant No.H1142) Nation Pre-research Project(grant No.3210402)
关键词 apatite fission track tectonic uplift hydrocarbon migration sandstone-type uranium deposit NW Junggar Basin apatite fission track tectonic uplift hydrocarbon migration sandstone-type uranium deposit NW Junggar Basin
  • 相关文献

同被引文献232

引证文献8

二级引证文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部