期刊文献+

Mid-Cretaceous Hothouse Climate and the Expansion of Early Angiosperms 被引量:6

Mid-Cretaceous Hothouse Climate and the Expansion of Early Angiosperms
下载PDF
导出
摘要 The remarkable transition of early angiosperms from a small to a dominant group characterized the terrestrial ecosystem of the Cretaceous. This transition was instigated and promoted by environmental changes. Mid-Cretaceous is characterized by major geological events that affected the global environment. δ^18O, palaeothermometer TEX86, and other climatic indices from marine sediments suggest rapid temperature increase during mid-Cretaceous despite occasional short cooling events. Simultaneously, terrestrial deposits in East Asia changed from coal-bearing to shale, then to red beds and evaporites. Plant assemblages and other paleoclimate indicators point to rapid aridification for midCretaceous terrestrial environments. In addition, the wildfires were frequently spread all over the earth by the numerous charcoal evidence during the Mid-Cretaceous. Thus, we speculate that the seasonally dry and hot conditions of mid-Cretaceous created a fiery hothouse world. Early angiosperms increased in abundance and diversity and evolved from a few aquatic species to terrestrial herbaceous and then to the diversified flora of today. Angiosperms showed rapid physiological evolution in vein density and leaf area that improved photosynthesis and water absorption. These ecophysiological changes made early angiosperms well adapted to the hot and dry environment in mid-Cretaceous. Moreover, these physiological changes facilitated the fire–angiosperm cycles in mid-Cretaceous that likely further stimulated the early angiosperm evolution. The remarkable transition of early angiosperms from a small to a dominant group characterized the terrestrial ecosystem of the Cretaceous. This transition was instigated and promoted by environmental changes. Mid-Cretaceous is characterized by major geological events that affected the global environment. δ^18O, palaeothermometer TEX86, and other climatic indices from marine sediments suggest rapid temperature increase during mid-Cretaceous despite occasional short cooling events. Simultaneously, terrestrial deposits in East Asia changed from coal-bearing to shale, then to red beds and evaporites. Plant assemblages and other paleoclimate indicators point to rapid aridification for midCretaceous terrestrial environments. In addition, the wildfires were frequently spread all over the earth by the numerous charcoal evidence during the Mid-Cretaceous. Thus, we speculate that the seasonally dry and hot conditions of mid-Cretaceous created a fiery hothouse world. Early angiosperms increased in abundance and diversity and evolved from a few aquatic species to terrestrial herbaceous and then to the diversified flora of today. Angiosperms showed rapid physiological evolution in vein density and leaf area that improved photosynthesis and water absorption. These ecophysiological changes made early angiosperms well adapted to the hot and dry environment in mid-Cretaceous. Moreover, these physiological changes facilitated the fire–angiosperm cycles in mid-Cretaceous that likely further stimulated the early angiosperm evolution.
出处 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2018年第5期2004-2025,共22页 地质学报(英文版)
基金 supported by the National Natural Science Foundation of China(No.41602023,41402007) the Key Laboratory Project of Gansu Province(Grant No.1309RTSA041)
关键词 MID-CRETACEOUS hothouse wildfire early angiosperm diversification Mid-Cretaceous hothouse wildfire early angiosperm diversification
  • 相关文献

同被引文献101

引证文献6

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部