期刊文献+

基于人工神经网络数据挖掘在群体药代动力学中的知识发现 被引量:2

Knowledge discovery based on artificial neural network data mining in population pharmacokinetics
原文传递
导出
摘要 目的人工神经网络(ANN)是人工智能的一个组成部分,本文针对医药信息数据挖掘技术,探讨和总结基于人工神经网络在群体药物动力学中的体系结构。方法对网络数据库中群体药物动力学中的信息样本进行数据挖掘,通过仿真模拟生成大样本群体药代动力学(PPK)数据库,并建立基于SPSS系统的人工神经网络PPK模型。结果模拟的大样本PPK数据与文献报道具有一致的统计学特征,ANN模型建模简单,分析精度良好。结论通过PKK数据挖据及模拟可以重建ANN分析模型。 Objective Artificial neural networks (ANN) is an integral part of artificial intelligence. In this paper, the architecture of artificial neural networks in population pharmacokinetics is discussed and summarized according to the data mining techniques of medical information. Methods The data samples of population pharmacokinetics in network databases are collected by data mining, and a large sample population pharmacokinetics (PPK) database is generated by simulation, and an artificial neural network PPK model based on SPSS system is established. Results The simulated large sample PPK data have the same statistical characteristics as those reported in the literature. The ANN model is simple and the analysis accuracy is better. Conclusion ANN analysis model can be reconstructed by PKK data mining and simulation.
作者 王海燕 周陆怡 鲁思博 杨丽 黄锦元 鲁澄宇 WANG Hai-yan;ZHOU Lu-yi;LU Si-bo;YANG Li;HUANG Jin-yuan;lb LU Cheng-yu(Guangdong Medical University,Library;College of Pharmacy,Zhanjiang 524023,Guangdong Province,China;Jodery School of Computer Science,Acadia University,Nova Scotia B4P 2R6,Canada)
出处 《中国临床药理学杂志》 CAS CSCD 北大核心 2018年第20期2449-2451,共3页 The Chinese Journal of Clinical Pharmacology
基金 湛江市科技计划项目基金资助项目(2014801117)
关键词 人工神经网络 数据挖掘 群体药代动力学 模拟 artificial neural network data mining population pharma-cokinetics simulation
  • 相关文献

参考文献3

二级参考文献22

  • 1周鲁,赵蔡斌.药物清除率的定量构动关系研究[J].华西药学杂志,2005,20(1):4-6. 被引量:8
  • 2王泽,李新城,朱伟兴.药物生物利用度遗传神经网络预测研究[J].药学学报,2006,41(12):1180-1183. 被引量:8
  • 3杨帆,黎宁,刘恩.非线性最小二乘法及BP神经网络在血管外给药动力学模拟中的应用[J].数理医药学杂志,2007,20(2):200-202. 被引量:4
  • 4Dohnal V, Kuea K, Jun D. What are artificial neural networks and what they can do [ J ] ? Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub, 2005; 149:221 -224.
  • 5Yamamura S. Clinical application of artificial neural network ( ANN ) modeling to predict pharmacokinetic parameters of severely ill patients [ J ]. Adv Drug Deliv Rev,2003 ; 55 : 1233 - 1251.
  • 6Turner JV, Maddalena D J, Cutler DJ. Pharmacokinetic parameter prediction from drug structure using artificial neural networks [ J ]. Ira J Pharm, 2004; 270:209-219.
  • 7Gaweda AE, Jacobs AA, Brier ME, et al. Pharmacodynamic population analysis in chronic renal failure using artificial neural networks - a comparative study [ J ]. Neural Netw, 2003 ; 16:841 - 845.
  • 8Belia A, Grabnar I, Belie I, et al. Predicting the anti -hypertensive effect of nitrendipine from plasma concentration profiles using artificial neural networks [ J]. Comput Biol Med, 2005 ;35:892 - 904.
  • 9Open data in the United States [EB/OL]. https://www, data. gov/ open - gov/, 2016 - 08 - 12.
  • 10CSK Lai, G Pires. Testing of a Model Evaluating e - Government Por- tal Acceptance and Satisfaction [ J]. Electronic Journal of Information Systems Evaluation, 2010, (1): 36 - 46.

共引文献49

同被引文献25

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部