摘要
分析了一种6绳索6自由度的绳索牵引式并联机器人,基于齐次变换矩阵法建立了机器人运动学和动力学模型,根据其动力学模型及传统PID控制器,基于BP神经网络设计了BP神经网络PID控制器,机器人在运动过程中通过BP神经网络调整PID参数。最后通过仿真将其控制结果与基于传统PID控制器的控制结果进行对比,得出这种控制方法能够提高绳索牵引式并联机器人的控制精度和响应速度。
A kinematic and dynamic model of a six-cable 6-DOF cable-towed parallel robot is built based on the homogeneous transformation matrix method. According to the dynamic model traditional PID controller, a BP neural network PID controller is designed, and the controller adjusts the PID parameters through BP neural network during the movement of the robot. At last, after comparing the simulation of the control result with the control result based on the traditional PID controller, it can be concluded that the proposed control method can improve the control accuracy and response of the cable-towed parallel robot.
作者
何文凯
王江北
陈萌
费燕琼
He Wenkai;Wang Jiangbei;Chen Meng;Fei Yanqiong(Institute of Robotics,Shanghai Jiaotong University,Shanghai 20024)
出处
《高技术通讯》
EI
CAS
北大核心
2018年第7期627-632,共6页
Chinese High Technology Letters
基金
航天基金(USCAST2016-30)资助项目
关键词
绳索并联机器人
神经网络
PID控制
cable-towed parallel robot
neural network
control
PID control