期刊文献+

齐次Rota-Baxter 3-李代数(Ⅱ) 被引量:1

Homogeneous Rota-Baxter 3-Lie Algebras (Ⅱ)
下载PDF
导出
摘要 无限维单3-李代数A_ω=sum from m∈Z FL_m上权为λ的齐次Rota-Baxter算子R是A_ω的Rota-Baxter算子,且满足R(L_m)=f(m) L_m,其中f:Z→F。当λ不等于零时,3-李代数的权为λ的Rota-Baxter算子完全由权为1的Rota-Baxter算子所决定。研究A_ω上满足f(0)=0,f(1)=-1,权为1且f在无穷多个偶数上取非零值的14类齐性Rota-Baxter算子的结构;在3-李代数A_ω的基底空间A上,利用齐次Rota-Baxter算子构造齐次Rota-Baxter 3-李代数(A,[,,]_j,R_j),1≤ j≤ 7,其中R_j是由f_j确定的齐次Rota-Baxter算子。 Homogeneous Rota-Baxter operators R with weight A on the infinite dimensional simple 3-Lie algebra Aω=∑m∈ZFLm are Rota-Baxter operators which satisfy R(Lm) = f(m)Lm , where f:Z → F is a function. Since Rota-Baxter operators of weight A with λ ≠ 0 on 3-Lie algebras are completely determined by the case λ= 1 . The structures of 14 homogeneous Rota-Baxter operators of weight 1 on Aω with f(0) = 0, f( 1 ) = - 1 and f(m) ≠ 0 for the infinite even m are discussed. On the vector space A, homo- geneous Rota-Baxter 3-Lie algebras (A, [ ,, ], Ri) are constructed by the homogeneous Rota-Baxter operators, where Ri is the homogeneous Rota-Baxter operator determined by fj.
作者 白瑞蒲 马越 侯帅 亢闯闯 巴一 BAI Ruipu;MA Yue;HOU Shuai;KANG Chuangchuang;BA Yi(Key Laboratory of Machine Learning and Computational Intelligence of Hebei Province,Baoding 071002,China;College of Mathematics and Information Science,Hebei University,Baoding 071002,China)
出处 《黑龙江大学自然科学学报》 CAS 2018年第4期396-401,共6页 Journal of Natural Science of Heilongjiang University
基金 国家自然科学基金资助项目(11371245) 河北省自然科学基金资助项目(A2014201006)
关键词 3-李代数 齐次Rota-Baxter算子 齐次Rota-Baxter 3-李代数 3-Lie algebra homogeneous Rota-Baxter operator homogeneous Rota-Baxter 3-Lie algebra
  • 相关文献

参考文献1

二级参考文献8

  • 1FILIPPOV V T N. n-Lie algebras[ J]. Siberian Mathematical Journal, 1985, 26(6) : 879 -891.
  • 2MARMO G, VILASI G, VINOGRADOV A M. The local structure of n-Poisson and n-Jacobi manifolds[J]. Journal of Geometry and Physics, 1998 25(1) : 141 -182.
  • 3NAMBU Y. Generalized Hamiltonian dynamics [ J ]. Physical Review D, 1973, 7 (8) : 2405 -2412.
  • 4TAKHTAJAN L. On foundation of the generalized Nambu mechanics [ J ]. Communications in Mathematical Physics, 1994, 160 (2) : 295 -315.
  • 5BAI R, BAI C, WANG J. Realizations of 3-Lie algebras[ J]. Journal of Mathematical Physics, 2010, 51 (6) : 063505.
  • 6HUMPHREYS J E. Introduction to Lie algebras and representation theory[ M ]. New York: Springer Science & Business Media, 1972.
  • 7白瑞蒲,陈双双,程荣,李奇勇.具有1-维导代数的6-维3-李代数的结构(英文)[J].黑龙江大学自然科学学报,2013,30(4):421-424. 被引量:3
  • 8Ruipu BAI,Hui LIU,Meng ZHANG.3-Lie Algebras Realized by Cubic Matrices[J].Chinese Annals of Mathematics,Series B,2014,35(2):261-270. 被引量:4

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部