期刊文献+

冷加工316L不锈钢裂尖力学分析 被引量:1

Mechanical Analysis of Crack Tip in Cold Working 316L Stainless Steel
下载PDF
导出
摘要 为了研究冷加工对316L不锈钢裂尖力学特性的影响,采用有限元模拟分析了单轴拉伸和冷轧-拉伸不锈钢应力腐蚀裂尖应力-应变状态。结果表明:随着拉伸变形量的增加,单轴拉伸和冷轧-拉伸裂尖Mises应力、等效塑性应变、拉伸应力和拉伸应变均有不同程度的增大。预冷轧改变了316 L钢的力学参量,因而影响了裂尖应力-应变状态,拉伸变形量相同时,冷轧-拉伸裂尖应力应变均不同程度地大于单轴拉伸裂尖应力、应变,但随着拉伸变形量的增加,冷轧-拉伸和单轴拉伸裂尖应力差逐渐减小,应变差有所增加。 In order to study the effect of cold working on the mechanical properties of 316 L stainless steel, the stress-strain state of stress corrosion cracking tip of stainless steel in uniaxial tension and cold rolling-tension was analyzed by finite element simulation. The results show that with the increase of tensile deformation amount, the Mises stress, equivalent plastic strain, tensile stress and tensile strain of uniaxial tensile and cold rolling tension crack tip increase in different degrees.The mechanical parameters of 316 L steel are changed by pre-cold rolling, which affects the stress-strain state of the crack tip.When the tensile deformation amount is the same, the stress and strain of cold rolling-tension crack tip are higher than those of uniaxial tension in different degree. However, with the increase of tensile deformation, the stress difference of crack tip between cold rolling-tension tension specimens decreases gradually, and the strain difference increases.
作者 樊亚玲 杨宏亮 FAN Yaling;YANG Hongliang(College of Mechanical and Electrical Engineering, Xi'an Railway Vocational & Technical Institute, Xi'an 710014, China;Center of Engineering Training, Xi'an University of Science and Technology, Xi'an 710054, China)
出处 《热加工工艺》 CSCD 北大核心 2018年第19期155-158,共4页 Hot Working Technology
基金 陕西省教育厅科研计划资助项目(16JK1493)
关键词 应力腐蚀 冷加工 应力应变 力学状态 316L不锈钢 stress corrosion cracking cold working stress-strain mechanical state 316L stainless steel
  • 相关文献

参考文献4

二级参考文献25

  • 1高欣,吴欣强,关辉,韩恩厚.高温高压水环境中腐蚀产物膜的研究现状[J].腐蚀科学与防护技术,2007,19(2):110-113. 被引量:15
  • 2Xue H, Shoji T. Journal of Pressure Vessel Technology, Transactions of the ASME[J], 2007, 129:254.
  • 3Ruther W E, Soppet W K, Kassner T F. Corrosion[J], 1988, 44(11): 791.
  • 4Elkebir O A, Szumrner A. International Journal of Hydrogen Energy[J], 2002, 27:793.
  • 5Lu Y H, Peng Q T, Sam Jet al. Journal of Nuclear Materials[J], 2005, 347:52.
  • 6Sennour M, Laghoutaris P, Guerre C et al. JournalofNuclear Materials[J], 2009, 393:254.
  • 7Lozano-Perez S, Yarnada T, Terachi T et al. Acta Materialia[J], 2009, 57:5361.
  • 8Zhang S H, Tan Y, Liang K X. Acta Metallurgica Sinica[J], 2011, 47(9): 1147 (in Chinese).
  • 9Tan Y, Zhang S H, Liang K X. Journal of Chinese Society for Corrosion andProtection[J], 2013, 33(6): 491 (in Chinese).
  • 10Xue H, Sato Y, Shoji T. Journal of Pressure Vessel Technology, Transactions of the ASME[J], 2009, 131: 61.

共引文献27

同被引文献6

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部