期刊文献+

基于区域划分的点云全局配准研究

The research of Point cloud global registration based on region division
下载PDF
导出
摘要 在分析了基于穷举思想进行全局配准的常用方法的基础上,阐明了现有方法在两点云低重叠比例情况时配准的局限性,提出了基于区域划分的超级四点全等集算法用于点云全局配准的方法,通过实验分别定性、定量地对比了本算法与四点全等集算法在不同点云数目以及不同重叠比例下的配准效果,验证了本算法在低重叠比例情况下的优越性。本算法对于几何特征不明显且重叠比例较低的点云具有较好的配准效果,对提高点云全局配准的精度及效率具有重要的意义。 Based on the analysis of the common methods of global registration based on exhaustive method,the limitations of existing methods in the case of low overlap ratio of two point cloud are clarified.A Super 4-Points congruence Sets algorithm based on region partition is proposed for the global registration of point clouds.The cost calculation is compared qualitatively and quantitatively through experiments.The registration results of the method and the 4-Points congruence sets algorithm under different number of point cloud and different overlap ratio verify the superiority of the algorithm in the case of low overlap ratio.This algorithm has a good registration effect for point cloud whose geometric features are not obvious and the overlap ratio is low.It is of great significance to improve the accuracy and efficiency of point cloud global registration.
作者 周建钊 杜文超 颜雨吉 何晓辉 代菊英 Zhou Jianzhao;Du Wenchao;Yan Yuji;He Xiaohui;Dai Juying(College of Field Engineering,PLA Army Engineering University,Nanjing 210007,China)
出处 《信息技术与网络安全》 2018年第11期39-43,63,共6页 Information Technology and Network Security
关键词 区域划分 超级四点全等集算法 低重叠比例 穷举思想 全局配准 regional division super 4-Points congruence sets algorithm low overlap ratio exhaustive thought global registration
  • 相关文献

参考文献2

二级参考文献27

  • 1戴静兰,陈志杨,叶修梓.ICP算法在点云配准中的应用[J].中国图象图形学报,2007,12(3):517-521. 被引量:197
  • 2Besl P J, McKay N D. A method for registration of 3-Dshapes[J]. IEEE Transactions on Pattern Analysis and MachineIntelligence, 1992, 14(2): 239-256.
  • 3Rusinkiewicz S, Levoy M. Efficient variants of the ICP algorithm[C]//Proceedings of the 3rd International Conference on3D Digital Imaging and Modeling. Los Alamitos: IEEE ComputerSociety Press, 2001: 145-152.
  • 4Bouaziz S, Tagliasacchi A, Pauly M. Sparse iterative closestpoint[J]. Computer Graphics Forum, 2013, 32(5): 113-123.
  • 5Gelfand N, Mitra N J, Guibas L J, et al. Robust global registration[C]//Proceedings of the 3rd Eurographics Symposium onGeometry Processing. Aire-la-Ville: Eurographics AssociationPress, 2005: Article No. 197.
  • 6Irani S, Raghavan P. Combinatorial and experimental resultsfor randomized point matching algorithms[C]//Proceedings ofthe 12th Annual Symposium on Computational Geometry. NewYork: ACM Press, 1996: 68-77.
  • 7Li X J, Guskov I. Multi-scale features for approximate alignment of point-based surfaces[C]//Proceedings of the 3rd EurographicsSymposium on Geometry Processing. Aire-la-Ville:Eurographics Association Press, 2005: Article No. 217.
  • 8Pottmann H, Wallner J, Yang Y L, et al. Principal curvaturesfrom the integral invariant viewpoint[J]. Computer AidedGeometric Design, 2007, 24(8/9): 428-442.
  • 9Lai Y K, Hu S M, Fang T. Robust principal curvatures usingfeature adapted integral invariants[C]//Proceedings ofSIAM/ACM Joint Conference on Geometric and PhysicalModeling. New York: ACM Press, 2009: 325-330.
  • 10Aiger D, Mitra N J, Cohen-Or D. 4-points congruent sets forrobust pairwise surface registration[J]. ACM Transactions onGraphics, 2008, 27(3): Article No. 85.

共引文献53

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部