期刊文献+

CRISPR-Cas基因编辑技术的研究进展 被引量:2

Research Advances on CRISPR-Cas Genome Editing Technology
原文传递
导出
摘要 对于研究基因功能和靶向修饰,基因靶向编辑技术已经成为最重要的基因工具。成簇规律间隔短回文重复序列-成簇规律间隔短回文重复序列关联蛋白(clustered regularly interspaced short palindromic repeats-CRSPR-associated proteins, CRISPR-Cas)系统是继锌指核酸内切酶(zinc finger nucleases, ZFNs)和转录激活因子样效应物核酸酶(transcription activator-like effector nucleases,TALENs)的第三代基因定点编辑技术。CRISPR-Cas系统广泛存在于古生菌及细菌中,是机体长期进化形成的以RNA引导的降解入侵病毒或噬菌体DNA的适应性免疫系统。通过对原核生物CRISPR-Cas系统进行改造,形成了以RNA引导的对靶细胞中特定的基因序列进行定点修饰的新一代基因编辑技术。本文就该系统的发现、分型、结构、作用机制和应用等展开讨论。 For the study of gene function and targeted modifications, gene-targeted editing technology has become the most important genetic tool. The clustered regularly interspaced short palindromic repeats-CRSPR-associated proteins(CRISPR-Cas)system is a third-generation genome site-specific editing technology for zinc finger nucleases(ZFNs) and transcription activator-like effector nucleases(TALENs). The CRISPR-Cas system is widely found in the archaea and bacteria, it is a long-term evolution of body's adaptive immune system by RNA-directed degradation of invasive virus or phage DNA. By modifying the prokaryotic CRISPR-Cas system, a new generation of gene editing technology that is guided by RNA and target for specific gene sequences in target cells was formed. Here, we discusse the discovery, classification, structure, mechanism and application of the system.
作者 赵宁 李斌 史文珍 史欢欢 陈霞 高莉洁 何芳 韩楠楠 齐倩倩 狄政莉 常明则 张格娟 田晔 ZHAO Ning; LI Bin; SHI Wen-zhen; SHI Huan-huan; CHEN Xia; GA O Li-jie; HE Fang; HAN Nan-nan; QI Qian-qian; DI Zheng-li; CHANG Ming-ze; ZHANG Ge-juan; TIAN Ye(Neurology of XI'AN NO.3 Hospital, Xi'an, Shaanxi, 710018, China; School of Medicine, Yan'an University, Yan'an, Shaanxi, 716000, China; 3 Xi'an Central Hospital, Xi'an, Shaanxi, 710000, China)
出处 《现代生物医学进展》 CAS 2018年第17期3396-3400,共5页 Progress in Modern Biomedicine
基金 国家自然科学基金项目(81660210) 陕西省科技攻关计划项目(2014K11-03-02-04) 陕西省社会发展科技攻关项目(2016SF-173) 西安市科技计划项目(2017114SF/YX008(3)) 西安市卫生和计划生育委员会科技技术项目(J201701002)
  • 相关文献

二级参考文献15

  • 1Wiedenheft B, Sternberg SH, Doudna JA. Nature 2012; 482:331-338.
  • 2Terns MP, Terns RM. Curr Opin Microbiol20 11; 14:321-327.
  • 3Bhaya D, Davison M, Barrangou R. Ann Rev Genet 2011; 45:273-297.
  • 4Taylor GK, Heiter DF, Pietrokovski S, et al. Nucleic Acids Res 2011; 39:9705-9719.
  • 5Sapranauskas R, Gasiunas G, Fremaux C, et al. Nucleic Acids Res 2011; 39:9275-9282.
  • 6Makarova KS, Haft DH, Barrangou R, et al. Nat Rev Microbiol20ll; 9:467-477.
  • 7Makarova KS, Aravind L, WolfYl, et a1. Bioi Direct 2011; 6:38.
  • 8Makarova KS, Grishin NV, Shabalina SA, et al. Bioi Direct 2006; 1:7.
  • 9Jinek M, Chylinski K, Fonfara 1, et al. Science 2012; 337:816-82l.
  • 10Gasiunas G, Barrangou R, Horvath P, et al. Proc Natl Acad Sci USA 2012; 109:E2579-E2586.

共引文献76

同被引文献5

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部