摘要
针对传统聚类算法难以处理大规模数据和对噪声数据敏感等问题,基于模糊C有序均值聚类算法(FCOM),结合single-pass和online增量架构,分别提出了single-pass模糊C有序均值聚类算法(SPFCOM)和online模糊C有序均值聚类算法(OFCOM).SPFCOM和OFCOM算法首先对FCOM算法加权,然后以数据块为单位对数据集合进行增量式处理.实验结果表明,相较于对比算法,SPFCOM和OFCOM算法在聚类准确率方面得到了提高,还具有更强的鲁棒性.
Because traditional clustering algorithms are difficult to deal with large-scale data and sensitive to noise data,based on the Fuzzy C-ordered-means clustering( FCOM) algorithm,we propose a singlepass fuzzy C-ordered clustering algorithm,named SPFCOM,and an online fuzzy C-ordered clustering algorithm,named OFCOM,by combining single-pass and online incremental architectures respectively.These two algorithms weight the FCOM algorithm,and incrementally process the large-scale data chunk by chunk. Experimental results show that,compared with other similar prominent algorithms,the SPFCOM and OFCOM algorithms can achieve higher accuracy and better robustness.
作者
刘永利
郭呈怡
王恒达
晁浩
LIU Yong-li;GUO Cheng-yi;WANG Heng-da;CHAO Hao(School of Computer Science and Technology,Henan Polytechnic University,Henan Jiaozuo 454000,China)
出处
《北京邮电大学学报》
EI
CAS
CSCD
北大核心
2018年第4期29-36,共8页
Journal of Beijing University of Posts and Telecommunications
基金
河南省高等学校青年骨干教师项目(2015GGJS-068)
河南省科技攻关计划项目(172102210279)
河南省高校基本科研业务费专项资金项目(NSFRF1616)
关键词
模糊聚类
增量聚类
鲁棒性
fuzzy clustering
incremental clustering
robustness