期刊文献+

大数据背景下北京市大型居住区通勤绿道选线研究 被引量:16

Big Data-based Commuter Greenway Selection in Large Residential Areas of Beijing
下载PDF
导出
摘要 近年来,随着城市交通拥堵和环境污染等问题的日益凸显,自行车作为通勤出行方式的地位逐渐上升,通勤者对建立不受机动车干扰的、连续的、具备通勤功能的城市绿色道路的需求也在不断增加。绿色道路的线路建设不仅要保障空间可实施性和交通环境质量,还要与居民的通勤出行需求紧密结合,实现绿道使用的综合效益最大化。基于此,研究以北京市回龙观地区为对象,采用与居民出行行为有关的数据,识别郊区居民中短程通勤特征,划定主要通勤范围,探究基于居民真实出行的多源大数据的选线方法,通过基于通勤出行需求强度与吸引强度的绿道节点甄选与路段适宜性的评价分析。最后,通过GIS网络分析功能进行最优线路选择,并结合城市公园、绿地、河流等资源的分布情况进行修正,形成一条满足居民通勤需求的、完整互联的、安全的且具备较强实施性的绿色通道。最终达到降低居民通勤时耗、提升区域可达性、完善城市慢行系统网络的目的。 In recent years, the problems of urban traffic congestion and environmental pollution have become increasingly more obvious, which makes bike riding more popular in big cities. The need to build a continuous, non-motorized greenway for commuters is increasing in many cities. The construction of greenway should not only ensure the space availability and quality of traffic environment, but also meet the needs of residents for maximized comprehensive benefits. Based on this, with Huilongguan communities in Beijing as the research object, we evaluate and analyze the node elements of demands and attractions, in view of the metropolitan suburban short and medium-distance commuting requirements, to explore greenway selection method, based on real commuting big data of the residents. Finally, the best route is selected with the aid of GIS, and the attracting nodes are modified according to the distribution of resources such as city parks, green land, rivers, in order to build a well-connected and safe commuting greenway equipped with good infrastructures. The greenway may save commuting fare and time, improve the region accessibility and non-motorized traffic of big cities.
作者 梁军辉 杜洋 赛金波 黄昱然 LIANG Junhui;DU Yang;SAI Jinbo;HUANG Yuran(Beijing Tsinghua Tongheng Urban Planning and Design Institute,Beijing100085;School of Government,Peking University,Beijing100871)
出处 《风景园林》 2018年第8期30-35,共6页 Landscape Architecture
关键词 风景园林 绿道 通勤绿道 选线 大数据 北京市 landscape architecture greenway commuting greenway route selection big data Beijing
  • 相关文献

参考文献7

二级参考文献55

共引文献375

同被引文献232

引证文献16

二级引证文献76

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部