期刊文献+

融合文本概念化与网络表示的观点检索 被引量:6

Opinion Retrieval Method Combining Text Conceptualization and Network Embedding
下载PDF
导出
摘要 观点检索是自然语言处理领域中的一个热点研究课题.现有的观点检索模型在检索过程中往往无法根据上下文将词汇进行知识、概念层面的抽象,在语义层面忽略词汇之间的语义联系,观点层面缺乏观点泛化能力.因此,提出一种融合文本概念化与网络表示的观点检索方法.该方法首先利用知识图谱分别将用户查询和文本概念化到正确的概念空间,并利用网络表示将知识图谱中的词汇节点表示成低维向量,然后根据词向量推出查询和文本的向量,并用余弦公式计算用户查询与文本的相关度,接着引入基于统计机器学习的分类方法挖掘文本的观点.最后,利用概念空间、网络表示空间以及观点分析结果构建特征,并服务于观点检索模型.相关实验结果表明,所提出的检索模型可以有效提高多种检索模型的观点检索性能.其中,基于统一相关模型的观点检索方法在两个实验数据集上相比于基准方法,在MAP评价指标上分别提升了6.1%和9.3%,基于排序学习的观点检索方法在两个实验数据集上相比于基准方法,在MAP评价指标上分别提升了2.3%和14.6%. Opinion retrieval is a hot topic in the research of natural language processing. Most existing approaches in text opinion retrieval can not extract knowledge and concept from context. They also lack opinion generalization ability and overlook the semantic relations between words. This paper proposes an opinion retrieval method based on knowledge graph conceptualization and network embedding. First, conceptual knowledge graph is used to conceptualize the queries and texts into the correct conceptual space while the nodes in the knowledge graph are embedded into low dimensional vectors space by network embedding technology. Then, the similarity between queries and texts is calculated based on embedding vectors. According to the similarity score, the opinion scores of texts can be captured based on statistical machine learning methods. Finally, the concept space, knowledge representation space, and opinion mining result serve opinion retrieval models. The experiment shows that the retrieval model proposed in this paper can effectively improve the retrieval performance of multiple retrieval models. Compared with referenced method based on unified opinion, the proposed approach improves the MAP scores by 6.1% and 9.3%, respectively. Compared with referenced method based on learning to rank, proposed approach improves the MAP scores by 2.3% and 14.6%, respectively.
作者 廖祥文 刘德元 桂林 程学旗 陈国龙 LIAO Xiang-Wen;LIU De-Yuan;GUI Lin;CHENG Xue-Qi;CHEN Guo-Long(College of Mathematics and Computer Science,Fuzhou University,Fuzhou 350116,China;Fujian Provincial Key Laboratory of Networking Computing and Intelligent Information Processing(Fuzhou University),Fuzhou 350116,China;Key Laboratory of Network Data Science and Technology(The Chinese Academy of Sciences),Beijing 100190,China)
出处 《软件学报》 EI CSCD 北大核心 2018年第10期2899-2914,共16页 Journal of Software
基金 国家自然科学基金(61772135 U1605251) 中国科学院网络数据科学与技术重点实验室开放基金(CASNDST 201708 CASNDST201606) 可信分布式计算与服务教育部重点实验室主任基金(2017KF01) 福建省自然科学基金(2017J01755) 赛尔网络下一代互联网技术创新项目(NGII20160501)~~
关键词 信息检索 观点检索 知识图谱 文本概念化 网络表示 information retrieval opinion retrieval knowledge graph text conceptualization network embedding
  • 相关文献

参考文献3

二级参考文献137

  • 1张文修 吴伟业 梁吉业 等.粗糙集理论与方法[M].北京:科学出版社,2002..
  • 2Pawlak Z.Rough sets[J].International Journal of Computer and Information Sciences,1982,11:341-356.
  • 3Chouchoulas A,Shen Q.Rough seb-aided keyword reduction for text categorization[J].Applied Artificial Intelligence,2001,15(9):843-873.
  • 4Swiniarski R W,Skowron A.Rough set methods in feature selection and recognition[J].Pattern Recognition Letters,2003,24:833-849.
  • 5Hu Yi-chung.Rough sets for pattern classification using pairwise-comparison-based tables[J].Applied Mathematical Modelling,2013,37:7330-7337.
  • 6Wille R.Restructuring lattice theory:an approach based on hierarchies of concepts[C]//Rival I,ed.Ordered Sets.Dordrecht Reidel,1982:445-470.
  • 7Tonella.Using a concept lattice of decomposition slices for program understanding and impact analysis[J].IEEE Transactions on Software Engineering,2003,29 (6):495-509.
  • 8Arevalo G,Mens T.Analyzing object-oriented application frameworks using concept analysis[C]//LNCS.2002,2426:53-63.
  • 9Kaytoue M,Duplessis S,Kuznetsov S O,et al.Mining gene expression data with pattern structures in formal concept analysis[J].Information Sciences,2011,181(10):1989-2001.
  • 10Kent R E.Rough concept analysis[J].Fundamenta Informaticae,1996,27:169-181.

共引文献309

同被引文献46

引证文献6

二级引证文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部