摘要
It has been well known that nozzle end-clearances in a Variable Nozzle Turbine(VNT)are unfavorable for aerodynamic performance, especially at small openings, and efforts to further decrease size of the clearances are very hard due to thermal expansion. In this paper, both the different sizes of nozzle end-clearances and the various ratios of their distribution at the hub and shroud sides were modelled and investigated by performing 3D Computational Fluid Dynamics(CFD) and Finite Element Analysis(FEA) simulations with a code of transferring the aerodynamic pressure from the CFD results to the FEA calculations. It was found that increasing the size of the nozzle end-clearances divided equally at the hub and shroud sides deteriorates turbine efficiency and turbine wheel reliability, yet increases turbine flow capacity. And, when the total nozzle endclearances remain the same, varying nozzle end-clearances' distribution at the hub and shroud sides not only shifts operation point of a VNT turbine, but also affects the turbine wheel vibration stress.Compared with nozzle hub clearance, the shroud clearance is more sensitive to both aerodynamic performance and reliability of a VNT turbine. Consequently, a possibility is put forward to improve VNT turbine efficiency meanwhile decrease vibration stress by optimizing nozzle end-clearances' distribution.
It has been well known that nozzle end-clearances in a Variable Nozzle Turbine(VNT)are unfavorable for aerodynamic performance, especially at small openings, and efforts to further decrease size of the clearances are very hard due to thermal expansion. In this paper, both the different sizes of nozzle end-clearances and the various ratios of their distribution at the hub and shroud sides were modelled and investigated by performing 3D Computational Fluid Dynamics(CFD) and Finite Element Analysis(FEA) simulations with a code of transferring the aerodynamic pressure from the CFD results to the FEA calculations. It was found that increasing the size of the nozzle end-clearances divided equally at the hub and shroud sides deteriorates turbine efficiency and turbine wheel reliability, yet increases turbine flow capacity. And, when the total nozzle endclearances remain the same, varying nozzle end-clearances' distribution at the hub and shroud sides not only shifts operation point of a VNT turbine, but also affects the turbine wheel vibration stress.Compared with nozzle hub clearance, the shroud clearance is more sensitive to both aerodynamic performance and reliability of a VNT turbine. Consequently, a possibility is put forward to improve VNT turbine efficiency meanwhile decrease vibration stress by optimizing nozzle end-clearances' distribution.
基金
co-supported by the Natural Science Foundation of Hebei Province of China(No.E2017402135)
the Program of Science and Technology Research and Development of Handan of China(No.1621212047-2)