期刊文献+

一类具有分布式记忆项的跳-扩散方程的分步随机θ方法 被引量:1

The Split-step θ Method for Stochastic Jump-diffusion Equations with Distributed Memory
下载PDF
导出
摘要 针对一类具有分布式记忆项与泊松跳的随机微分方程,构造了该方程的分步随机数值解,在局部Lipschitz条件下证明了分步随机θ数值解的均方收敛性以及收敛阶达到1/2.最后,证明了方程解的指数稳定性,并在此基础上,进一步证明了所构造的数值解的均方稳定性. In this article,the numerical solutions to a type of stochastic differential equations with Poisson jumps and the distributed memory term were studied by applying the split-step θ method. It was proved that the analytical solutions and the numerical solutions to the equations are bounded in high order,and that the convergence rate of the numerical solutions is approximately 1/2 under the local Lipschitz condition and some other conditions. Furthermore,the exponential stability of the solutions was proved,on the basis of which the mean-square stability of the split-step θ numerical solutions was proved.
作者 杜颖 熊洁 DU Ying;XIONG Jie(School of Finance and Economics,Xi'an International Studies University,Xi'an 710128,China)
出处 《海南热带海洋学院学报》 2018年第5期47-53,共7页 Journal of Hainan Tropical Ocean University
基金 陕西省教育厅科研计划项目(16JK1637)
关键词 带跳的随机微分方程 分步随机θ方法 局部LIPSCHITZ条件 均方收敛性 均方稳定性 stochastic differential equations with jumps split-step θ method local Lipschitz condition mean-square convergence mean-square stability
  • 相关文献

参考文献3

二级参考文献19

  • 1Cannon J R,Lin Y,Wang S.Determination of a control parameter in a parabolic partial defferential equation[J].J Aust Math Socser B,1991,33(2):149-163.
  • 2Cannon J R,Lin Y,Xu S.Numerical procedures for the determination of an unknown coefficient in semi-linear parabolic defferential equations[J].Inverse Problem,1994(10):227-243.
  • 3S.Wang,Y.Lin.A finite difference solution to an inverse problem determining a control function in a parabolic partial differential equation[J].Inverse Problem,1989(5):631-640.
  • 4M.Tatari,M.Dehghan.He’s variational iteration method for computing a control parameter in a semi-linear parabolic equation[J].Chaos Solitons Fractals,2007,33(2):671-677.
  • 5Can Baran Emine.Numerical procedures for determining of an unknown parameter in parabolic equation[J].Applied Mathematics and Computation,2005,16(2):1219-1226.
  • 6J H.He.Variational iteration method-Some receant results and new interpretations[J].J Comput Appl Math,2007,207(1):3-17.
  • 7Yongxiang Zhao,Aiguo Xiao.Variational iteration method for singular perturbation initial value problems[J].Computer Physics Communications,2010,181:947-956.
  • 8JH.He.Some asymptotic methods for strongly nonlinear problems[J].Int.J.Mod.Phys,2006,20:1141-1199.
  • 9H.Tari,D D.Ganji,M.Rostamian.Approximate solutions of K(2,2),Kd V and modified Kd V equations by variatiional iteration method,homotopy perturbation method and homotopy analysis method[J].Int.J.Nonlinear Sci.,2007,8(2):203-210.
  • 10Can Baran Emine.Numerical procedures for determining of an unknown parameter in parabolic equation[J].Applied Mathematics and Computation,2005,162:1219-1226.

共引文献8

同被引文献3

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部