摘要
在随机环境中两性分枝过程L^1-收敛的对数判别准则的基础上,以条件均值增长率的上确界作为规范化因子,令{ε_k (ξ_n)}和{σ_k (ξ_n)}为非增长序列,当k≥k_0时,给出了W_n→WL^2的必要条件sum from k=0 to ∞ k^(-1)σ_k (ξ_n)<∞,同时求出了在一定条件下,当k≥1时,{W_n;n∈N}依L^2-收敛到非退化到的随机变量W的充分条件是sum from k=0 to ∞ k^(-1)σ_k (ξ_n)<∞和sum from k=0 to ∞ k^(-1)ε_k (ξ_n)<∞。
On the basis of the logarithmic criterion of L1-convergence of a bisexual branching process in random environment, taking the upper bound of conditional mean growth rate as the normalization factor, let {εκ(ξn)}和{σκ(ξn)} is nongrowth sequence, when k≥k0 , the necessary conditions∞∑κ=0k-1σκ(ξn)〈∞ of WnL2→W are put forward. Under certain conditions, when k ≥ 1 , the sufficient condition for {Wn;n∈N} to a nondegenerate random variable by L2-convergence is ∞∑κ=0k-1σκ(ξn)〈∞和∞∑κ=0k-1εκ(ξn)〈∞.
作者
赵玲
彭朝晖
周远正
Zhao Ling;Peng Zhaohui;Zhou Yuanzheng(College of Mathematics and Statistics,Changsha University of Science and Technology,Changsha 410114,China;College of Economics and Management,Changsha University of Science and Technology,Changsha 410114,China)
出处
《湖南文理学院学报(自然科学版)》
CAS
2018年第4期1-4,共4页
Journal of Hunan University of Arts and Science(Science and Technology)
基金
国家自然科学基金项目(11731012
11571052)
湖南省自然科学基金项目(2017JJ2271
2017JJ2274
018JJ2417)
关键词
随机环境
两性分枝过程
条件均值增长率
L2-收敛
random environment
bisexual branching process
conditional mean growth rate
L2-Convergence