摘要
Recently, lateral flow assay (LFA) has attracted researchers' attention because of its considerable advantages of superior portability, rapid detection, cost-effectiveness and ease of use. This review provides a brief overview of latest researches of LFA, including the practical use of LFA in both qualitative and quantitative analysis in different areas. Though bio-recognition molecules in the LFA used to be antibodies, a new kind of recognition element called aptamer, showing significant advantages, is developed rapidly in recent years. The highly specific recognition of aptamers/antibodies and targets are combined with the excellent properties of a dry-reagent strip biosensor that enables efficiently detection in point-of-care applications. Herein, we compared the aptamers with antibodies, summarized the principle of LFAs, and three main elements for the LFAs (recognition molecule, signal transduction element, the targets). Additionally, we summarized different optimal experimental conditions in the recent LFA-related studies to give detailed overview of the LFA development. We hope the review can give a general guide for the development of LFAs.
Recently, lateral flow assay (LFA) has attracted researchers' attention because of its considerable advantages of superior portability, rapid detection, cost-effectiveness and ease of use. This review provides a brief overview of latest researches of LFA, including the practical use of LFA in both qualitative and quantitative analysis in different areas. Though bio-recognition molecules in the LFA used to be antibodies, a new kind of recognition element called aptamer, showing significant advantages, is developed rapidly in recent years. The highly specific recognition of aptamers/antibodies and targets are combined with the excellent properties of a dry-reagent strip biosensor that enables efficiently detection in point-of-care applications. Herein, we compared the aptamers with antibodies, summarized the principle of LFAs, and three main elements for the LFAs (recognition molecule, signal transduction element, the targets). Additionally, we summarized different optimal experimental conditions in the recent LFA-related studies to give detailed overview of the LFA development. We hope the review can give a general guide for the development of LFAs.
基金
financially support to the Key Program of Beijing Municipal Science and Technology Commission (No. D161100002116002)
the National Key Research and Development Program of China (Nos. 2016YFF0203703, 2017YFB0306901)
the National Natural Science Foundation of China (No. 51673012)